Development and Evaluation of the Biological Activities of a Plain Mucoadhesive Hydrogel as a Potential Vehicle for Oral Mucosal Drug Delivery.

IF 5 3区 化学 Q1 POLYMER SCIENCE Gels Pub Date : 2024-09-03 DOI:10.3390/gels10090574
Ana G Pardo-Rendón, Jorge L Mejía-Méndez, Edgar R López-Mena, Sergio A Bernal-Chávez
{"title":"Development and Evaluation of the Biological Activities of a Plain Mucoadhesive Hydrogel as a Potential Vehicle for Oral Mucosal Drug Delivery.","authors":"Ana G Pardo-Rendón, Jorge L Mejía-Méndez, Edgar R López-Mena, Sergio A Bernal-Chávez","doi":"10.3390/gels10090574","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to develop HGs based on cationic guar gum (CGG), polyethylene glycol (PEG), propylene glycol (PG), and citric acid (CA) using a 2<sup>k</sup> factorial experimental design to optimize their properties. HGs were characterized through FTIR and Raman spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The biological activities of HGs were determined by evaluating their mucoadhesive capacity and antibacterial activity in vitro, whereas their toxicity was analyzed using <i>Artemia salina</i> nauplii as an in vivo model. Results revealed that HGs were successfully optimized for their viscosity, pH, and sensory properties, and it was observed that varying concentrations of PEG-75 did not influence them. Through SEM analyses, it was noted that increased levels of PEG-75 resulted in HGs with distinct porosity and textures, whereas FTIR and Raman spectroscopy exhibited representative peaks of the raw materials used during the synthesis process. TGA studies indicated the thermal stability of HGs, as they presented degradation patterns at 100 and 300 °C. The synthesized HGs exhibited similar mucoadhesion kinetic profiles, demonstrating a displacement factor at an equilibrium of 0.57 mm/mg at 5 min. The antibacterial activity of HGs was appraised as poor against Gram-positive and Gram-negative bacteria due to their MIC<sub>90</sub> values (>500 μg/mL). Regarding <i>A. salina</i>, treatment with HGs neither decreased their viability nor induced morphological changes. The obtained results suggest the suitability of CGG/PEG HGs for oral mucosa drug delivery and expand the knowledge about their mucoadhesive capacity, antibacterial potential, and in vivo biocompatibility.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431386/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090574","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to develop HGs based on cationic guar gum (CGG), polyethylene glycol (PEG), propylene glycol (PG), and citric acid (CA) using a 2k factorial experimental design to optimize their properties. HGs were characterized through FTIR and Raman spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The biological activities of HGs were determined by evaluating their mucoadhesive capacity and antibacterial activity in vitro, whereas their toxicity was analyzed using Artemia salina nauplii as an in vivo model. Results revealed that HGs were successfully optimized for their viscosity, pH, and sensory properties, and it was observed that varying concentrations of PEG-75 did not influence them. Through SEM analyses, it was noted that increased levels of PEG-75 resulted in HGs with distinct porosity and textures, whereas FTIR and Raman spectroscopy exhibited representative peaks of the raw materials used during the synthesis process. TGA studies indicated the thermal stability of HGs, as they presented degradation patterns at 100 and 300 °C. The synthesized HGs exhibited similar mucoadhesion kinetic profiles, demonstrating a displacement factor at an equilibrium of 0.57 mm/mg at 5 min. The antibacterial activity of HGs was appraised as poor against Gram-positive and Gram-negative bacteria due to their MIC90 values (>500 μg/mL). Regarding A. salina, treatment with HGs neither decreased their viability nor induced morphological changes. The obtained results suggest the suitability of CGG/PEG HGs for oral mucosa drug delivery and expand the knowledge about their mucoadhesive capacity, antibacterial potential, and in vivo biocompatibility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发和评估作为口腔黏膜给药潜在载体的普通黏液黏性水凝胶的生物活性。
本研究旨在开发基于阳离子瓜尔胶 (CGG)、聚乙二醇 (PEG)、丙二醇 (PG) 和柠檬酸 (CA) 的 HGs,采用 2K 因式实验设计来优化其特性。通过傅立叶变换红外光谱和拉曼光谱、扫描电子显微镜(SEM)和热重分析(TGA)对 HGs 进行了表征。通过评估 HGs 的体外粘附能力和抗菌活性确定了 HGs 的生物活性,并以鲑鱼稚鱼为体内模型分析了 HGs 的毒性。结果显示,成功地优化了 HGs 的粘度、pH 值和感官特性,并观察到不同浓度的 PEG-75 不会对其产生影响。通过扫描电子显微镜(SEM)分析发现,PEG-75 含量的增加导致 HG 具有不同的孔隙率和纹理,而傅立叶变换红外光谱(FTIR)和拉曼光谱则显示出合成过程中所用原材料的代表性峰值。热重分析(TGA)研究表明了 HGs 的热稳定性,因为它们在 100 和 300 °C 时呈现降解模式。合成的 HGs 表现出相似的粘液粘附动力学曲线,5 分钟时的平衡位移因子为 0.57 mm/mg。由于 HGs 的 MIC90 值(大于 500 μg/mL),其对革兰氏阳性和革兰氏阴性细菌的抗菌活性较差。至于盐水青霉,使用 HGs 处理既不会降低其存活率,也不会引起形态变化。这些结果表明 CGG/PEG HGs 适合用于口腔黏膜给药,并拓展了人们对其黏附能力、抗菌潜力和体内生物相容性的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊最新文献
Dual-Action Gemcitabine Delivery: Chitosan-Magnetite-Zeolite Capsules for Targeted Cancer Therapy and Antibacterial Defense. Emulsion Structural Remodeling in Milk and Its Gelling Products: A Review. Process Mapping of the Sol-Gel Transition in Acid-Initiated Sodium Silicate Solutions. Microencapsulation Efficiency of Carboxymethylcellulose, Gelatin, Maltodextrin, and Acacia for Aroma Preservation in Jasmine Instant Tea. Cross-Linked Polyimide Aerogels with Excellent Thermal and Mechanical Properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1