Gels for Water Remediation: Current Research and Perspectives.

IF 5 3区 化学 Q1 POLYMER SCIENCE Gels Pub Date : 2024-09-12 DOI:10.3390/gels10090585
Gabriela Buema, Adina-Elena Segneanu, Dumitru-Daniel Herea, Ioan Grozescu
{"title":"Gels for Water Remediation: Current Research and Perspectives.","authors":"Gabriela Buema, Adina-Elena Segneanu, Dumitru-Daniel Herea, Ioan Grozescu","doi":"10.3390/gels10090585","DOIUrl":null,"url":null,"abstract":"<p><p>The development of cost-effective and high-performance technologies for wastewater treatment is essential for achieving a sustainable economy. Among the various methods available for water remediation, adsorption is widely recognized as an effective and straightforward approach for removing a range of pollutants. Gel materials, particularly hydrogels and aerogels, have attracted significant research interest due to their unique properties. Hydrogels, for instance, are noted for their ability to be regenerated and reused, ease of separation and handling, and suitability for large-scale applications. Additionally, their low cost, high water absorption capacity, and contribution to environmental protection are important advantages. Aerogels, on the other hand, are distinguished by their low thermal conductivity, transparency, flexibility, high porosity, mechanical strength, light weight, large surface area, and ultralow dielectric constant. This review provides a comprehensive analysis of the current literature, highlighting gaps in knowledge regarding the classification, preparation, characterization, and key properties of these materials. The potential application of hydrogels and aerogels in water remediation, particularly in removing contaminants such as dyes, heavy metals, and various organic and inorganic pollutants, is also discussed.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090585","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The development of cost-effective and high-performance technologies for wastewater treatment is essential for achieving a sustainable economy. Among the various methods available for water remediation, adsorption is widely recognized as an effective and straightforward approach for removing a range of pollutants. Gel materials, particularly hydrogels and aerogels, have attracted significant research interest due to their unique properties. Hydrogels, for instance, are noted for their ability to be regenerated and reused, ease of separation and handling, and suitability for large-scale applications. Additionally, their low cost, high water absorption capacity, and contribution to environmental protection are important advantages. Aerogels, on the other hand, are distinguished by their low thermal conductivity, transparency, flexibility, high porosity, mechanical strength, light weight, large surface area, and ultralow dielectric constant. This review provides a comprehensive analysis of the current literature, highlighting gaps in knowledge regarding the classification, preparation, characterization, and key properties of these materials. The potential application of hydrogels and aerogels in water remediation, particularly in removing contaminants such as dyes, heavy metals, and various organic and inorganic pollutants, is also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于水质修复的凝胶:当前研究与展望。
开发具有成本效益和高性能的废水处理技术对于实现可持续经济至关重要。在现有的各种水处理方法中,吸附被公认为是去除一系列污染物的有效而直接的方法。凝胶材料,尤其是水凝胶和气凝胶,因其独特的性能而引起了研究人员的极大兴趣。例如,水凝胶因其可再生和重复使用、易于分离和处理以及适合大规模应用而备受关注。此外,水凝胶的低成本、高吸水性和对环境保护的贡献也是其重要优势。另一方面,气凝胶具有热导率低、透明度高、柔韧性好、孔隙率高、机械强度高、重量轻、表面积大和介电常数超低等特点。本综述对现有文献进行了全面分析,重点介绍了在这些材料的分类、制备、表征和关键特性方面存在的知识空白。此外,还讨论了水凝胶和气凝胶在水处理方面的潜在应用,特别是在去除染料、重金属以及各种有机和无机污染物等污染物方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
期刊最新文献
Poly(Vinyl Alcohol) Drug and PVA-Drug-Surfactant Complex Organogel with Dimethyl Sulfoxide as a Drug Delivery System. Crosslinking by Click Chemistry of Hyaluronan Graft Copolymers Involving Resorcinol-Based Cinnamate Derivatives Leading to Gel-like Materials. Organogels of FmocFF: Exploring the Solvent-Dependent Gelmorphic Behavior. Development of Alginate Composite Microparticles for Encapsulation of Bifidobacterium animalis subsp. lactis. Wound Healing Potential of Herbal Hydrogel Formulations of Cedrus brevifolia Extracts in Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1