Huaiming Wang, Wenlong Feng, Xue Ren, Quan Tao, Liangliang Rong, Yiping P Du, Hui Dong
{"title":"Acquisition Acceleration of Ultra-low Field MRI with Parallel Imaging and Compressed Sensing in Microtesla Fields.","authors":"Huaiming Wang, Wenlong Feng, Xue Ren, Quan Tao, Liangliang Rong, Yiping P Du, Hui Dong","doi":"10.1109/TBME.2024.3466929","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In recent years, ultra-low field (ULF) magnetic resonance imaging (MRI) has gained widespread attention due to its advantages, such as low cost, light weight, and portability. However, the low signal-to-noise ratio (SNR) leads to a long scan time. Herein, we study the acceleration performance of parallel imaging (PI) and compressed sensing (CS) in different kspace sampling strategies at 0.12 mT.</p><p><strong>Methods: </strong>This study employs phantoms to assess the efficiency of acceleration methods at ULF MRI, in which signals are detected by ultra-sensitive superconducting quantum interference devices (SQUIDs). We compare the performance of fast Fourier transform (FFT), generalized auto-calibrating partially parallel acquisitions (GRAPPA), and eigenvector-based SPIRiT (ESPIRiT) in Cartesian sampling, while also evaluating non-uniform FFT (NUFFT), GRAPPA operator gridding, and ESPIRiT in nonCartesian sampling. We design a resolution phantom to investigate the effectiveness of these methods in maintaining image resolution.</p><p><strong>Results: </strong>In Cartesian sampling, GRAPPA and ESPIRiT jointly regularized by total variation and ℓ1-norm (TVJℓ1 -ESPIRiT) methods reconstructed good-quality phantom images with an acceleration factor of R = 2. In contrast, TVJℓ1-ESPIRiT exhibited improved image quality and much less signal loss even for R = 4. In radial sampling, TVJℓ1-ESPIRiT reduced the acquisition time to 1.69 minutes at R = 4, with a respective improvement of 12.26 dB in peak SNR compared to NUFFT. The resolution phantom imaging showed that the reconstructions by PI and CS maintained the original resolution of 2 mm.</p><p><strong>Conclusion and significance: </strong>This study improves the practicality of ULF MRI at microtesla fields by implementing imaging acceleration with PI and CS in different k-space sampling.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2024.3466929","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: In recent years, ultra-low field (ULF) magnetic resonance imaging (MRI) has gained widespread attention due to its advantages, such as low cost, light weight, and portability. However, the low signal-to-noise ratio (SNR) leads to a long scan time. Herein, we study the acceleration performance of parallel imaging (PI) and compressed sensing (CS) in different kspace sampling strategies at 0.12 mT.
Methods: This study employs phantoms to assess the efficiency of acceleration methods at ULF MRI, in which signals are detected by ultra-sensitive superconducting quantum interference devices (SQUIDs). We compare the performance of fast Fourier transform (FFT), generalized auto-calibrating partially parallel acquisitions (GRAPPA), and eigenvector-based SPIRiT (ESPIRiT) in Cartesian sampling, while also evaluating non-uniform FFT (NUFFT), GRAPPA operator gridding, and ESPIRiT in nonCartesian sampling. We design a resolution phantom to investigate the effectiveness of these methods in maintaining image resolution.
Results: In Cartesian sampling, GRAPPA and ESPIRiT jointly regularized by total variation and ℓ1-norm (TVJℓ1 -ESPIRiT) methods reconstructed good-quality phantom images with an acceleration factor of R = 2. In contrast, TVJℓ1-ESPIRiT exhibited improved image quality and much less signal loss even for R = 4. In radial sampling, TVJℓ1-ESPIRiT reduced the acquisition time to 1.69 minutes at R = 4, with a respective improvement of 12.26 dB in peak SNR compared to NUFFT. The resolution phantom imaging showed that the reconstructions by PI and CS maintained the original resolution of 2 mm.
Conclusion and significance: This study improves the practicality of ULF MRI at microtesla fields by implementing imaging acceleration with PI and CS in different k-space sampling.
期刊介绍:
IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.