The invasive acanthocephalan parasite Pachysentis canicola is associated with a declining endemic island fox population on San Miguel Island.

IF 3.7 2区 医学 Q1 PARASITOLOGY International journal for parasitology Pub Date : 2024-09-24 DOI:10.1016/j.ijpara.2024.09.003
O Alejandro Aleuy, Leslie W Woods, Benjamin J Padilla, Dennis Richardson, Juliann T Schamel, Stacy Baker, Martín García-Varela, Charlotte Hammond, Sarah P Lawson, Jasmine N Childress, Jason Rohr, Kevin D Lafferty
{"title":"The invasive acanthocephalan parasite Pachysentis canicola is associated with a declining endemic island fox population on San Miguel Island.","authors":"O Alejandro Aleuy, Leslie W Woods, Benjamin J Padilla, Dennis Richardson, Juliann T Schamel, Stacy Baker, Martín García-Varela, Charlotte Hammond, Sarah P Lawson, Jasmine N Childress, Jason Rohr, Kevin D Lafferty","doi":"10.1016/j.ijpara.2024.09.003","DOIUrl":null,"url":null,"abstract":"<p><p>In the late 1990s, the San Miguel Island fox (Urocyon littoralis littoralis) faced near-extinction. Fourteen of the 15 remaining foxes were placed into an island-based captive breeding program used to repopulate the island. Although the fox population in San Miguel reached pre-decline numbers by 2010, a second decline started around 2014, coincidental with a newly observed acanthocephalan parasite. To identify this introduced acanthocephalan species and determine the pathologic consequences of its infection on the health of foxes, we used an extensive record of island fox necropsies and associated parasite collections. In addition, we used detailed fox capture-recapture data to investigate population health and demographic trends of foxes before and after parasite emergence. We identify the parasite as Pachysentis canicola, a common acanthocephalan in mainland foxes in North America. The parasite was detected in 69% of the necropsied foxes from San Miguel Island and was not found in any of the other five Channel Island fox subspecies. Health impacts attributed to the acanthocephalan parasite, including erosive and ulcerative enteritis, transmural necrosis, and inflammation, were described in 47% of the foxes infected with the acanthocephalan. Despite infection with various other helminth parasite species, body condition remained good and the mortality rate low in San Miguel Island foxes until the arrival of the acanthocephalan. Body condition improved after 2018, perhaps due to increases in rainfall following a drought, but remained 27% lower than the pre-acanthocephalan period, which suggests that environmental conditions and parasitism jointly drive fox population dynamics.</p>","PeriodicalId":13725,"journal":{"name":"International journal for parasitology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal for parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ijpara.2024.09.003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the late 1990s, the San Miguel Island fox (Urocyon littoralis littoralis) faced near-extinction. Fourteen of the 15 remaining foxes were placed into an island-based captive breeding program used to repopulate the island. Although the fox population in San Miguel reached pre-decline numbers by 2010, a second decline started around 2014, coincidental with a newly observed acanthocephalan parasite. To identify this introduced acanthocephalan species and determine the pathologic consequences of its infection on the health of foxes, we used an extensive record of island fox necropsies and associated parasite collections. In addition, we used detailed fox capture-recapture data to investigate population health and demographic trends of foxes before and after parasite emergence. We identify the parasite as Pachysentis canicola, a common acanthocephalan in mainland foxes in North America. The parasite was detected in 69% of the necropsied foxes from San Miguel Island and was not found in any of the other five Channel Island fox subspecies. Health impacts attributed to the acanthocephalan parasite, including erosive and ulcerative enteritis, transmural necrosis, and inflammation, were described in 47% of the foxes infected with the acanthocephalan. Despite infection with various other helminth parasite species, body condition remained good and the mortality rate low in San Miguel Island foxes until the arrival of the acanthocephalan. Body condition improved after 2018, perhaps due to increases in rainfall following a drought, but remained 27% lower than the pre-acanthocephalan period, which suggests that environmental conditions and parasitism jointly drive fox population dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
入侵的棘头蚴寄生虫 Pachysentis canicola 与圣米格尔岛上的特有岛狐数量下降有关。
20 世纪 90 年代末,圣米格尔岛狐(Urocyon littoralis littoralis)濒临灭绝。在仅存的 15 只狐狸中,有 14 只被放入岛上的圈养繁殖计划中,用于重新繁殖岛上的狐狸。虽然圣米格尔岛的狐狸数量在 2010 年达到了衰退前的水平,但在 2014 年左右又开始了第二次衰退,这与一种新观察到的棘头蚴寄生虫不谋而合。为了确定这种引入的棘头蚴物种,并确定其感染对狐狸健康造成的病理后果,我们使用了大量的岛上狐狸尸体解剖记录和相关寄生虫采集记录。此外,我们还利用详细的狐狸捕获再捕获数据,调查了寄生虫出现前后狐狸的种群健康状况和人口趋势。我们确定寄生虫为 Pachysentis canicola,这是北美大陆狐狸中常见的棘头蚴。在圣米格尔岛 69% 的尸体解剖狐狸中检测到了这种寄生虫,而在海峡岛其他五个狐狸亚种中均未发现。47%感染棘头蚴寄生虫的狐狸的健康受到了影响,包括侵蚀性和溃疡性肠炎、跨膜坏死和炎症。尽管感染了其他多种蠕虫寄生虫,但在棘头蚴到来之前,圣米格尔岛狐狸的身体状况一直很好,死亡率也很低。2018 年后,身体状况有所改善,这可能是由于干旱后降雨量增加所致,但仍比尖头蚴感染前低 27%,这表明环境条件和寄生虫共同驱动着狐狸的种群动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.40
自引率
2.50%
发文量
76
审稿时长
23 days
期刊介绍: International Journal for Parasitology offers authors the option to sponsor nonsubscriber access to their articles on Elsevier electronic publishing platforms. For more information please view our Sponsored Articles page. The International Journal for Parasitology publishes the results of original research in all aspects of basic and applied parasitology, including all the fields covered by its Specialist Editors, and ranging from parasites and host-parasite relationships of intrinsic biological interest to those of social and economic importance in human and veterinary medicine and agriculture.
期刊最新文献
Bat microfilariae in the cityscape: a transmission tale between bats, mites, and bat flies. Mitogenomic analysis of the position of the Azygiidae and constituent genera, with a new species of Azygia. Dense aquatic vegetation can reduce parasite transmission to amphibians. The microRNAome of Strongylus vulgaris larvae and their excretory/secretory products with identification of parasite-derived microRNAs in horse arterial tissue. A footworm in the door: revising Onchocerca phylogeny with previously unknown cryptic species in wild North American ungulates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1