{"title":"Advanced roll porous scaffold 3D bioprinting technology.","authors":"Vyacheslav Shulunov","doi":"10.1007/s10047-024-01470-y","DOIUrl":null,"url":null,"abstract":"<p><p>Improvements in the roll porous scaffold (RPS) 3D bioproduction technology will increase print density of 10-15 µm cells by ~ 20% up to ~ 1.5 × 10<sup>8</sup> cells/mL and purity of organoid formation by > 17%. The use of 360 and 1200 dpi inkjet printheads immediately enables biomanufacturing with 10-30 µm cells in a single organoid with performance > 1.8 L/h for 15 µm layer thickness. The spongy bioresorbable ribbon for RPS technology is designed to solve the problems of precise placement, leakage and increasing in the number of instantly useable cell types and superior to all currently dominant 3D bioprinting methods in speed, volume, and print density without the use of expensive equipment and components. The potential of RPS for parallel testing of new substances studied was not on animals, but using generated 3D biomodels \"organ on a chip\". Solid organoids are more suitable for personalized medicine with simultaneous checking of several treatment methods and drugs, targeted therapy for a specific patient in vitro using the 3D composition of his personal cells, and selection of the most effective ones with the least toxicity. Overcoming the shortage of organs for implantation and personal hormone replacement therapy for everyone was achieved using printed endocrine glands based on their DNA.</p>","PeriodicalId":15177,"journal":{"name":"Journal of Artificial Organs","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Organs","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10047-024-01470-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Improvements in the roll porous scaffold (RPS) 3D bioproduction technology will increase print density of 10-15 µm cells by ~ 20% up to ~ 1.5 × 108 cells/mL and purity of organoid formation by > 17%. The use of 360 and 1200 dpi inkjet printheads immediately enables biomanufacturing with 10-30 µm cells in a single organoid with performance > 1.8 L/h for 15 µm layer thickness. The spongy bioresorbable ribbon for RPS technology is designed to solve the problems of precise placement, leakage and increasing in the number of instantly useable cell types and superior to all currently dominant 3D bioprinting methods in speed, volume, and print density without the use of expensive equipment and components. The potential of RPS for parallel testing of new substances studied was not on animals, but using generated 3D biomodels "organ on a chip". Solid organoids are more suitable for personalized medicine with simultaneous checking of several treatment methods and drugs, targeted therapy for a specific patient in vitro using the 3D composition of his personal cells, and selection of the most effective ones with the least toxicity. Overcoming the shortage of organs for implantation and personal hormone replacement therapy for everyone was achieved using printed endocrine glands based on their DNA.
期刊介绍:
The aim of the Journal of Artificial Organs is to introduce to colleagues worldwide a broad spectrum of important new achievements in the field of artificial organs, ranging from fundamental research to clinical applications. The scope of the Journal of Artificial Organs encompasses but is not restricted to blood purification, cardiovascular intervention, biomaterials, and artificial metabolic organs. Additionally, the journal will cover technical and industrial innovations. Membership in the Japanese Society for Artificial Organs is not a prerequisite for submission.