Modular Hemipelvic Prosthesis Preserves Normal Biomechanics and Showed Good Compatibility: A Finite Element Analysis.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-09-21 DOI:10.3390/jfb15090276
Yuanrui Luo, Hongtao Sheng, Yong Zhou, Li Min, Chongqi Tu, Yi Luo
{"title":"Modular Hemipelvic Prosthesis Preserves Normal Biomechanics and Showed Good Compatibility: A Finite Element Analysis.","authors":"Yuanrui Luo, Hongtao Sheng, Yong Zhou, Li Min, Chongqi Tu, Yi Luo","doi":"10.3390/jfb15090276","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the biomechanical compatibility of a modular hemipelvic prosthesis by comparing stress distributions between an implanted pelvis and a healthy pelvis. Finite element analysis was used to simulate bilateral standing loads on both models, analyzing critical regions such as the sacroiliac joints, iliac crest, acetabulum, and prosthesis connection points. Six models with varied displacements of the hip joint rotational center were also introduced to assess the impact of deviations on stress distribution. The implanted pelvis had a stress distribution closely matching that of the intact pelvis, indicating that the prosthesis design maintained the biomechanical integrity of the pelvis. Stress patterns in displacement models with deviations of less than 10 mm were similar to the standard model, with only minor changes in stress magnitude. However, backward, upward, and inward deviations resulted in stress concentrations, particularly in the prosthesis connection points, increasing the likelihood of mechanical failure. The modular hemipelvic prosthesis demonstrated good biomechanical compatibility with minimal impact on pelvic stress distribution, even with moderate deviations in the hip joint's rotational center; outward, forward, and downward displacements are preferable to minimize stress concentration and prevent implant failure in cases where minor deviations in the rotational center are unavoidable during surgery.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433228/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15090276","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to evaluate the biomechanical compatibility of a modular hemipelvic prosthesis by comparing stress distributions between an implanted pelvis and a healthy pelvis. Finite element analysis was used to simulate bilateral standing loads on both models, analyzing critical regions such as the sacroiliac joints, iliac crest, acetabulum, and prosthesis connection points. Six models with varied displacements of the hip joint rotational center were also introduced to assess the impact of deviations on stress distribution. The implanted pelvis had a stress distribution closely matching that of the intact pelvis, indicating that the prosthesis design maintained the biomechanical integrity of the pelvis. Stress patterns in displacement models with deviations of less than 10 mm were similar to the standard model, with only minor changes in stress magnitude. However, backward, upward, and inward deviations resulted in stress concentrations, particularly in the prosthesis connection points, increasing the likelihood of mechanical failure. The modular hemipelvic prosthesis demonstrated good biomechanical compatibility with minimal impact on pelvic stress distribution, even with moderate deviations in the hip joint's rotational center; outward, forward, and downward displacements are preferable to minimize stress concentration and prevent implant failure in cases where minor deviations in the rotational center are unavoidable during surgery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模块化半骨盆假体保留了正常的生物力学并显示出良好的兼容性:有限元分析
本研究旨在通过比较植入骨盆和健康骨盆之间的应力分布,评估模块化半骨盆假体的生物力学兼容性。研究采用有限元分析方法模拟了两个模型的双侧站立负荷,分析了骶髂关节、髂嵴、髋臼和假体连接点等关键区域。此外,还引入了六个髋关节旋转中心位移不同的模型,以评估偏差对应力分布的影响。植入骨盆的应力分布与完整骨盆的应力分布非常接近,这表明假体设计保持了骨盆的生物力学完整性。偏差小于 10 毫米的位移模型的应力模式与标准模型相似,应力大小仅有微小变化。但是,向后、向上和向内的偏差会导致应力集中,尤其是在假体连接点,从而增加了机械故障的可能性。模块化半骨盆假体表现出良好的生物力学兼容性,即使髋关节旋转中心出现适度偏差,对骨盆应力分布的影响也很小;在手术中旋转中心出现轻微偏差不可避免的情况下,最好向外、向前和向下位移,以尽量减少应力集中,防止假体失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy. Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants. PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles. Benzyldimethyldodecyl Ammonium Chloride-Doped Denture-Based Resin: Impact on Strength, Surface Properties, Antifungal Activities, and In Silico Molecular Docking Analysis. A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1