Regeneration of Critical Calvarial Bone Defects Using Bovine Xenograft, Magnesium-Enriched Bovine Xenograft and Autologous Dentin in Rats: Micro-CT, Gene Expression and Immunohistochemical Analysis.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of Functional Biomaterials Pub Date : 2024-09-18 DOI:10.3390/jfb15090270
Marija Čandrlić, Ana Terezija Jerbić Radetić, Hrvoje Omrčen, Barbara Franović, Lara Batičić, Tamara Gulić, Tea Čaljkušić-Mance, Sanja Zoričić Cvek, Lucija Malešić, Željka Perić Kačarević, Olga Cvijanović Peloza
{"title":"Regeneration of Critical Calvarial Bone Defects Using Bovine Xenograft, Magnesium-Enriched Bovine Xenograft and Autologous Dentin in Rats: Micro-CT, Gene Expression and Immunohistochemical Analysis.","authors":"Marija Čandrlić, Ana Terezija Jerbić Radetić, Hrvoje Omrčen, Barbara Franović, Lara Batičić, Tamara Gulić, Tea Čaljkušić-Mance, Sanja Zoričić Cvek, Lucija Malešić, Željka Perić Kačarević, Olga Cvijanović Peloza","doi":"10.3390/jfb15090270","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to evaluate the efficacy of autologous dentin (AD), bovine xenograft (BX) and magnesium-enriched bovine xenograft (BX + Mg) in the healing of critical cranial bone defects (CCBDs) in rats. Eighty male Wistar rats were divided into four groups: BX, BX + Mg, AD and the control group (no intervention). Eight mm CCBDs were created and treated with the respective biomaterials. Healing was assessed 7, 15, 21 and 30 days after surgery by micro-computed tomography (micro-CT), real-time polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Micro-CT analysis showed that AD had the highest bone volume and the least amount of residual biomaterial at day 30, indicating robust bone formation and efficient resorption. BX + Mg showed significant bone volume but had more residual biomaterial compared to AD. RT-PCR showed that the expression of osteocalcin (OC), the receptor activator of nuclear factor κB (RANK) and sclerostin (SOST), was highest in the AD group at day 21 and vascular endothelial growth factor (VEGF) at day 15, indicating increased osteogenesis and angiogenesis in the AD group. Immunohistochemical staining confirmed intense BMP-2/4 and SMAD-1/5/8 expression in the AD group, indicating osteoinductive properties. The favorable gene expression profile and biocompatibility of AD and BX + Mg make them promising candidates for clinical applications in bone tissue engineering. Further research is required to fully exploit their potential in regenerative surgery.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15090270","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to evaluate the efficacy of autologous dentin (AD), bovine xenograft (BX) and magnesium-enriched bovine xenograft (BX + Mg) in the healing of critical cranial bone defects (CCBDs) in rats. Eighty male Wistar rats were divided into four groups: BX, BX + Mg, AD and the control group (no intervention). Eight mm CCBDs were created and treated with the respective biomaterials. Healing was assessed 7, 15, 21 and 30 days after surgery by micro-computed tomography (micro-CT), real-time polymerase chain reaction (RT-PCR) and immunohistochemical analysis. Micro-CT analysis showed that AD had the highest bone volume and the least amount of residual biomaterial at day 30, indicating robust bone formation and efficient resorption. BX + Mg showed significant bone volume but had more residual biomaterial compared to AD. RT-PCR showed that the expression of osteocalcin (OC), the receptor activator of nuclear factor κB (RANK) and sclerostin (SOST), was highest in the AD group at day 21 and vascular endothelial growth factor (VEGF) at day 15, indicating increased osteogenesis and angiogenesis in the AD group. Immunohistochemical staining confirmed intense BMP-2/4 and SMAD-1/5/8 expression in the AD group, indicating osteoinductive properties. The favorable gene expression profile and biocompatibility of AD and BX + Mg make them promising candidates for clinical applications in bone tissue engineering. Further research is required to fully exploit their potential in regenerative surgery.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用牛异种移植、高镁牛异种移植和自体牙本质再生大鼠钙骨关键缺损:显微 CT、基因表达和免疫组化分析。
本研究旨在评估自体牙本质(AD)、牛异种移植(BX)和富镁牛异种移植(BX + Mg)对大鼠危重颅骨缺损(CCBD)愈合的疗效。80 只雄性 Wistar 大鼠被分为四组:BX组、BX + Mg组、AD组和对照组(无干预)。大鼠的CCBD为8毫米,用相应的生物材料进行治疗。通过微型计算机断层扫描(micro-CT)、实时聚合酶链反应(RT-PCR)和免疫组化分析,对术后 7、15、21 和 30 天的愈合情况进行评估。显微计算机断层扫描分析表明,AD 的骨量最高,而在第 30 天时残留的生物材料最少,这表明骨形成强劲而吸收有效。与AD相比,BX + Mg显示出显著的骨量,但有更多的残留生物材料。RT-PCR显示,骨钙素(OC)、核因子κB受体激活剂(RANK)和硬骨素(SOST)的表达在第21天的AD组最高,血管内皮生长因子(VEGF)的表达在第15天最高,表明AD组的骨形成和血管生成增加。免疫组化染色证实,AD 组中 BMP-2/4 和 SMAD-1/5/8 表达旺盛,表明其具有诱导骨生成的特性。AD 和 BX + Mg 具有良好的基因表达谱和生物相容性,有望在骨组织工程中得到临床应用。要充分挖掘它们在再生手术中的潜力,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
期刊最新文献
A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy. Mechanical and Corrosion Behaviour in Simulated Body Fluid of As-Fabricated 3D Porous L-PBF 316L Stainless Steel Structures for Biomedical Implants. PLLA/GO Scaffolds Filled with Canine Placenta Hydrogel and Mesenchymal Stem Cells for Bone Repair in Goat Mandibles. Benzyldimethyldodecyl Ammonium Chloride-Doped Denture-Based Resin: Impact on Strength, Surface Properties, Antifungal Activities, and In Silico Molecular Docking Analysis. A Polyurethane Electrospun Membrane Loaded with Bismuth Lipophilic Nanoparticles (BisBAL NPs): Proliferation, Bactericidal, and Antitumor Properties, and Effects on MRSA and Human Breast Cancer Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1