Qinghe Yu, Ziming Cai, Xiaofeng Liu, Shuhui Lin, Pian Li, Ye Ruan, Jinzhu Liang, Xu He, Wenping Lin
{"title":"Research Progress on Treating Spinal Cord Injury by Modulating the Phenotype of Microglia.","authors":"Qinghe Yu, Ziming Cai, Xiaofeng Liu, Shuhui Lin, Pian Li, Ye Ruan, Jinzhu Liang, Xu He, Wenping Lin","doi":"10.31083/j.jin2309171","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a severe central nervous system disorder with no currently available effective treatment. Microglia are immune cells in the central nervous system that play crucial roles in the SCI occurrence, development, and recovery stages. They exhibit dynamic polarization over time and can switch between classical activation (M1) and alternative activation (M2) phenotypes to respond to environmental stimuli. The M1 phenotype is involved in initiating and sustaining inflammatory responses, while the M2 phenotype exerts anti-inflammatory effects and promotes tissue repair in damaged areas. Inhibiting M1 polarization and promoting M2 polarization have become hotspots in regulating neuroinflammation and treating SCI. This article provides a comprehensive review centered on modulating microglial polarization phenotypes for SCI treatment.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 9","pages":"171"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2309171","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) is a severe central nervous system disorder with no currently available effective treatment. Microglia are immune cells in the central nervous system that play crucial roles in the SCI occurrence, development, and recovery stages. They exhibit dynamic polarization over time and can switch between classical activation (M1) and alternative activation (M2) phenotypes to respond to environmental stimuli. The M1 phenotype is involved in initiating and sustaining inflammatory responses, while the M2 phenotype exerts anti-inflammatory effects and promotes tissue repair in damaged areas. Inhibiting M1 polarization and promoting M2 polarization have become hotspots in regulating neuroinflammation and treating SCI. This article provides a comprehensive review centered on modulating microglial polarization phenotypes for SCI treatment.
期刊介绍:
JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.