Effects of Dual-Site Anodal Transcranial Direct Current Stimulation on Attention, Decision-Making, and Working Memory during Sports Fatigue in Elite Soccer Athletes.

IF 2.5 4区 医学 Q3 NEUROSCIENCES Journal of integrative neuroscience Pub Date : 2025-01-21 DOI:10.31083/JIN26401
Fengxue Qi, Na Zhang, Michael A Nitsche, Longyan Yi, Yingqiu Zhang, Tian Yue
{"title":"Effects of Dual-Site Anodal Transcranial Direct Current Stimulation on Attention, Decision-Making, and Working Memory during Sports Fatigue in Elite Soccer Athletes.","authors":"Fengxue Qi, Na Zhang, Michael A Nitsche, Longyan Yi, Yingqiu Zhang, Tian Yue","doi":"10.31083/JIN26401","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored. This study investigated the effect of dual-site tDCS targeting the dorsolateral prefrontal cortex (DLPFC) or primary motor cortex (M1) on attention, decision-making, and working memory in elite soccer athletes during sports fatigue.</p><p><strong>Methods: </strong>Sports fatigue was induced in 23 (non-goalkeeper) elite soccer athletes, who then participated in three counterbalanced intervention sessions: dual-site tDCS over the M1, dual-site tDCS over the DLPFC, and sham tDCS. Following tDCS, participants completed the Stroop, Iowa Gambling, and 2-back tasks.</p><p><strong>Results: </strong>We found a significant improvement in Stroop task accuracy following dual-site anodal tDCS over the M1 compared with the sham intervention in the incongruent condition (<i>p</i> = 0.036). Net scores in the Iowa Gambling task during blocks 4 (<i>p</i> = 0.019) and 5 (<i>p</i> = 0.014) significantly decreased under dual-site tDCS targeting the DLPFC compared with the sham intervention. No differences in 2-back task performance were observed between sessions (all <i>p</i> > 0.05).</p><p><strong>Conclusions: </strong>We conclude that dual-site anodal tDCS applied to the M1 enhanced attention performance while tDCS targeting the DLPFC increased risk propensity in a decision-making task during sports fatigue in elite soccer athletes. However, dual-site anodal tDCS targeting either the M1 or DLPFC did not significantly influence working memory performance during sports fatigue in this population. These preliminary findings suggest that dual-site tDCS targeting the M1 has beneficial effects on attention performance, potentially informing future research on sports fatigue in athletes.</p><p><strong>Clinical trial registration: </strong>No: NCT06594978. Registered 09 September, 2024; https://clinicaltrials.gov/search?cond=NCT06594978.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"24 1","pages":"26401"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/JIN26401","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored. This study investigated the effect of dual-site tDCS targeting the dorsolateral prefrontal cortex (DLPFC) or primary motor cortex (M1) on attention, decision-making, and working memory in elite soccer athletes during sports fatigue.

Methods: Sports fatigue was induced in 23 (non-goalkeeper) elite soccer athletes, who then participated in three counterbalanced intervention sessions: dual-site tDCS over the M1, dual-site tDCS over the DLPFC, and sham tDCS. Following tDCS, participants completed the Stroop, Iowa Gambling, and 2-back tasks.

Results: We found a significant improvement in Stroop task accuracy following dual-site anodal tDCS over the M1 compared with the sham intervention in the incongruent condition (p = 0.036). Net scores in the Iowa Gambling task during blocks 4 (p = 0.019) and 5 (p = 0.014) significantly decreased under dual-site tDCS targeting the DLPFC compared with the sham intervention. No differences in 2-back task performance were observed between sessions (all p > 0.05).

Conclusions: We conclude that dual-site anodal tDCS applied to the M1 enhanced attention performance while tDCS targeting the DLPFC increased risk propensity in a decision-making task during sports fatigue in elite soccer athletes. However, dual-site anodal tDCS targeting either the M1 or DLPFC did not significantly influence working memory performance during sports fatigue in this population. These preliminary findings suggest that dual-site tDCS targeting the M1 has beneficial effects on attention performance, potentially informing future research on sports fatigue in athletes.

Clinical trial registration: No: NCT06594978. Registered 09 September, 2024; https://clinicaltrials.gov/search?cond=NCT06594978.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
173
审稿时长
2 months
期刊介绍: JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.
期刊最新文献
Telomere Length and Oxidative Damage in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. The Robustness of White Matter Brain Networks Decreases with Aging. Effects of Dual-Site Anodal Transcranial Direct Current Stimulation on Attention, Decision-Making, and Working Memory during Sports Fatigue in Elite Soccer Athletes. Changes in the Parietal Lobe Subregion Volume at Various Stages of Alzheimer's Disease and the Role in Cognitively Normal and Mild Cognitive Impairment Conversion. Exploring the Pathophysiology, Diagnosis, and Treatment Options of Multiple Sclerosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1