Erythropoietin Reduces Inflammation, Oxidative Stress, and Apoptosis in a Rat Model of Bleomycin-Induced Idiopathic Pulmonary Fibrosis.

IF 3 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES Journal of Personalized Medicine Pub Date : 2024-09-13 DOI:10.3390/jpm14090972
Drosos Tsavlis, Kalliopi Domvri, Konstantinos Porpodis, Stamatia Papoutsopoulou, Doxakis Anestakis, Anna Tzoumaka, Soultana Meditskou, Konstantina Symeonidoy, Evangelia Spandou
{"title":"Erythropoietin Reduces Inflammation, Oxidative Stress, and Apoptosis in a Rat Model of Bleomycin-Induced Idiopathic Pulmonary Fibrosis.","authors":"Drosos Tsavlis, Kalliopi Domvri, Konstantinos Porpodis, Stamatia Papoutsopoulou, Doxakis Anestakis, Anna Tzoumaka, Soultana Meditskou, Konstantina Symeonidoy, Evangelia Spandou","doi":"10.3390/jpm14090972","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial disease with unknown etiology and no effective cure, posing a great health burden to society. Erythropoietin (EPO) has been demonstrated to have protective roles in various tissues such as brain, spinal cord, heart, kidney and lung tissues. In this study, we investigate the specific anti-inflammatory, antioxidant and antiapoptotic effects of erythropoietin on lung tissue in a bleomycin-induced rat model of idiopathic pulmonary fibrosis.</p><p><strong>Methods: </strong>Recombinant human EPO or saline was injected, and the animals were monitored for 14 days after bleomycin instillation. Their hematocrit and serum EPO levels were determined. Histological and immunohistochemical analyses were performed.</p><p><strong>Results: </strong>The extent of tissue injury, determined through morphometric analysis, was significantly decreased in size in animals treated with erythropoietin. An immunohistochemical analysis of the expression of cyclooxygenase-2 (COX-2), inducible synthase of nitric oxide (i-NOS), metalloproteinase-9 (MMP-9), erythropoietin receptor (EPO-R), and cytochrome-C (cyt-C) found these enzymes to be decreased in a statistically significant manner in animals treated with erythropoietin when compared to a non-treated group.</p><p><strong>Conclusions: </strong>The reduced expression of COX-2, i-NOS, MMP-9, EPO-R, and i-NOS in the lung tissues of animals treated with EPO indicates the anti-inflammatory, antioxidant and antiapoptotic action of erythropoietin, suggesting its potential therapeutic role in pulmonary fibrosis.</p>","PeriodicalId":16722,"journal":{"name":"Journal of Personalized Medicine","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433300/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Personalized Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jpm14090972","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial disease with unknown etiology and no effective cure, posing a great health burden to society. Erythropoietin (EPO) has been demonstrated to have protective roles in various tissues such as brain, spinal cord, heart, kidney and lung tissues. In this study, we investigate the specific anti-inflammatory, antioxidant and antiapoptotic effects of erythropoietin on lung tissue in a bleomycin-induced rat model of idiopathic pulmonary fibrosis.

Methods: Recombinant human EPO or saline was injected, and the animals were monitored for 14 days after bleomycin instillation. Their hematocrit and serum EPO levels were determined. Histological and immunohistochemical analyses were performed.

Results: The extent of tissue injury, determined through morphometric analysis, was significantly decreased in size in animals treated with erythropoietin. An immunohistochemical analysis of the expression of cyclooxygenase-2 (COX-2), inducible synthase of nitric oxide (i-NOS), metalloproteinase-9 (MMP-9), erythropoietin receptor (EPO-R), and cytochrome-C (cyt-C) found these enzymes to be decreased in a statistically significant manner in animals treated with erythropoietin when compared to a non-treated group.

Conclusions: The reduced expression of COX-2, i-NOS, MMP-9, EPO-R, and i-NOS in the lung tissues of animals treated with EPO indicates the anti-inflammatory, antioxidant and antiapoptotic action of erythropoietin, suggesting its potential therapeutic role in pulmonary fibrosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在博莱霉素诱导的特发性肺纤维化大鼠模型中,促红细胞生成素能减轻炎症、氧化应激和细胞凋亡。
背景:特发性肺纤维化(IPF)是一种病因不明、无法有效治愈的致命性间质性疾病,给社会造成了巨大的健康负担。促红细胞生成素(EPO)已被证实在大脑、脊髓、心脏、肾脏和肺组织等多种组织中具有保护作用。本研究探讨了红细胞生成素在博莱霉素诱导的特发性肺纤维化大鼠模型中对肺组织的特异性抗炎、抗氧化和抗凋亡作用:方法:注射重组人EPO或生理盐水,并在注射博莱霉素后对动物进行14天的监测。测定动物的血细胞比容和血清 EPO 水平。进行组织学和免疫组化分析:结果:通过形态计量分析确定,使用促红细胞生成素治疗的动物组织损伤程度明显减轻。对环氧合酶-2(COX-2)、一氧化氮诱导合成酶(i-NOS)、金属蛋白酶-9(MMP-9)、促红细胞生成素受体(EPO-R)和细胞色素-C(cyt-C)的表达进行免疫组化分析后发现,与未接受促红细胞生成素治疗的动物组相比,接受促红细胞生成素治疗的动物组中这些酶的表达明显减少:结论:在使用 EPO 治疗的动物肺组织中,COX-2、i-NOS、MMP-9、EPO-R 和 i-NOS 的表达均有所降低,这表明促红细胞生成素具有抗炎、抗氧化和抗细胞凋亡的作用,这表明它在肺纤维化中具有潜在的治疗作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Personalized Medicine
Journal of Personalized Medicine Medicine-Medicine (miscellaneous)
CiteScore
4.10
自引率
0.00%
发文量
1878
审稿时长
11 weeks
期刊介绍: Journal of Personalized Medicine (JPM; ISSN 2075-4426) is an international, open access journal aimed at bringing all aspects of personalized medicine to one platform. JPM publishes cutting edge, innovative preclinical and translational scientific research and technologies related to personalized medicine (e.g., pharmacogenomics/proteomics, systems biology). JPM recognizes that personalized medicine—the assessment of genetic, environmental and host factors that cause variability of individuals—is a challenging, transdisciplinary topic that requires discussions from a range of experts. For a comprehensive perspective of personalized medicine, JPM aims to integrate expertise from the molecular and translational sciences, therapeutics and diagnostics, as well as discussions of regulatory, social, ethical and policy aspects. We provide a forum to bring together academic and clinical researchers, biotechnology, diagnostic and pharmaceutical companies, health professionals, regulatory and ethical experts, and government and regulatory authorities.
期刊最新文献
Applications of Artificial Intelligence-Based Systems in the Management of Esophageal Varices. Clinical and Laboratory Parameters Associated with PICU Admission in Children with Multisystem Inflammatory Syndrome Associated with COVID-19 (MIS-C). Oral Care in Head and Neck Radiotherapy: Proposal for an Oral Hygiene Protocol. Sinonasal Outcomes Obtained after 2 Years of Treatment with Benralizumab in Patients with Severe Eosinophilic Asthma and CRSwNP: A "Real-Life" Observational Study. Melatonin Receptors and Serotonin: Age-Related Changes in the Ovaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1