Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases.

IF 6.7 1区 工程技术 Q1 CELL & TISSUE ENGINEERING Journal of Tissue Engineering Pub Date : 2024-09-24 eCollection Date: 2024-01-01 DOI:10.1177/20417314241282476
Sang Yoon Lee, Huynh Dai Phuc, Soong Ho Um, Rosaire Mongrain, Jeong-Kee Yoon, Suk Ho Bhang
{"title":"Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases.","authors":"Sang Yoon Lee, Huynh Dai Phuc, Soong Ho Um, Rosaire Mongrain, Jeong-Kee Yoon, Suk Ho Bhang","doi":"10.1177/20417314241282476","DOIUrl":null,"url":null,"abstract":"<p><p>Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.</p>","PeriodicalId":17384,"journal":{"name":"Journal of Tissue Engineering","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/20417314241282476","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光固化三维打印技术是促进缺氧相关疾病血管生成的先进工具。
三维(3D)生物打印已成为制造具有复杂结构(如血管网络)的复杂组织类似物的一种前景广阔的策略。要实现这一目标,生物墨水配方必须具有高度可打印的特性,并能提供模拟原生细胞外基质的细胞友好型微环境。打印技术的快速发展不断扩大研究人员的能力,使他们能够克服现有的生物障碍。与其他技术相比,基于紫外线的三维生物打印技术以其卓越的精确性而闻名,本综述将对其进行全面研究,并探讨其在与缺氧相关的各种组织模型中诱导血管生成的应用。三维生物打印的高精度和快速光固化能力对于精确复制错综复杂的血管网络以及扩大营养物质和气体的扩散范围至关重要。解决血管结构缺失问题对缺氧相关疾病至关重要,因为它能显著改善氧气输送和整体组织健康。因此,高分辨率三维生物打印技术有助于在三维工程组织中创建血管结构,为解决缺氧相关疾病提供了潜在的解决方案。本综述重点介绍了三维生物打印取得成功的基本要素,包括细胞类型、生物墨水成分和近期研究中强调的生长因子。本综述提供的见解强调了利用三维打印技术通过刺激血管生成来治疗缺氧相关疾病的广阔前景,从而补充了细胞疗法的疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Tissue Engineering
Journal of Tissue Engineering Engineering-Biomedical Engineering
CiteScore
11.60
自引率
4.90%
发文量
52
审稿时长
12 weeks
期刊介绍: The Journal of Tissue Engineering (JTE) is a peer-reviewed, open-access journal dedicated to scientific research in the field of tissue engineering and its clinical applications. Our journal encompasses a wide range of interests, from the fundamental aspects of stem cells and progenitor cells, including their expansion to viable numbers, to an in-depth understanding of their differentiation processes. Join us in exploring the latest advancements in tissue engineering and its clinical translation.
期刊最新文献
Unlocking the regenerative key: Targeting stem cell factors for bone renewal. Scaffold-mediated liver regeneration: A comprehensive exploration of current advances. Graphene derivative based hydrogels in biomedical applications. Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing. Discovery of bioactive peptides as therapeutic agents for skin wound repair.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1