Unveiling the tradeoff between device scale and surface nonidealities for an optimized quality factor at room temperature in 2D MoS2 nanomechanical resonators.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-09-27 DOI:10.1038/s41378-024-00763-9
Pengcheng Zhang, Yueyang Jia, Shuai Yuan, Maosong Xie, Zuheng Liu, Hao Jia, Rui Yang
{"title":"Unveiling the tradeoff between device scale and surface nonidealities for an optimized quality factor at room temperature in 2D MoS<sub>2</sub> nanomechanical resonators.","authors":"Pengcheng Zhang, Yueyang Jia, Shuai Yuan, Maosong Xie, Zuheng Liu, Hao Jia, Rui Yang","doi":"10.1038/s41378-024-00763-9","DOIUrl":null,"url":null,"abstract":"<p><p>A high quality (Q) factor is essential for enhancing the performance of resonant nanoelectromechanical systems (NEMS). NEMS resonators based on two-dimensional (2D) materials such as molybdenum disulfide (MoS<sub>2</sub>) have high frequency tunability, large dynamic range, and high sensitivity, yet room-temperature Q factors are typically less than 1000. Here, we systematically investigate the effects of device size and surface nonidealities on Q factor by measuring 52 dry-transferred fully clamped circular MoS<sub>2</sub> NEMS resonators with diameters ranging from 1 μm to 8 μm, and optimize the Q factor by combining these effects with the strain-modulated dissipation model. We find that Q factor first increases and then decreases with diameter, with an optimized room-temperature Q factor up to 3315 ± 115 for a 2-μm-diameter device. Through extensive characterization and analysis using Raman spectroscopy, atomic force microscopy, and scanning electron microscopy, we demonstrate that surface nonidealities such as wrinkles, residues, and bubbles are especially significant for decreasing Q factor, especially for larger suspended membranes, while resonators with flat and smooth surfaces typically have larger Q factors. To further optimize Q factors, we measure and model Q factor dependence on the gate voltage, showing that smaller DC and radio-frequency (RF) driving voltages always lead to a higher Q factor, consistent with the strain-modulated dissipation model. This optimization of the Q factor delineates a straightforward and promising pathway for designing high-Q 2D NEMS resonators for ultrasensitive transducers, efficient RF communications, and low-power memory and computing.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"140"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00763-9","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

A high quality (Q) factor is essential for enhancing the performance of resonant nanoelectromechanical systems (NEMS). NEMS resonators based on two-dimensional (2D) materials such as molybdenum disulfide (MoS2) have high frequency tunability, large dynamic range, and high sensitivity, yet room-temperature Q factors are typically less than 1000. Here, we systematically investigate the effects of device size and surface nonidealities on Q factor by measuring 52 dry-transferred fully clamped circular MoS2 NEMS resonators with diameters ranging from 1 μm to 8 μm, and optimize the Q factor by combining these effects with the strain-modulated dissipation model. We find that Q factor first increases and then decreases with diameter, with an optimized room-temperature Q factor up to 3315 ± 115 for a 2-μm-diameter device. Through extensive characterization and analysis using Raman spectroscopy, atomic force microscopy, and scanning electron microscopy, we demonstrate that surface nonidealities such as wrinkles, residues, and bubbles are especially significant for decreasing Q factor, especially for larger suspended membranes, while resonators with flat and smooth surfaces typically have larger Q factors. To further optimize Q factors, we measure and model Q factor dependence on the gate voltage, showing that smaller DC and radio-frequency (RF) driving voltages always lead to a higher Q factor, consistent with the strain-modulated dissipation model. This optimization of the Q factor delineates a straightforward and promising pathway for designing high-Q 2D NEMS resonators for ultrasensitive transducers, efficient RF communications, and low-power memory and computing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示二维 MoS2 纳米机械谐振器在室温下优化品质因数时器件尺度与表面非理想性之间的权衡。
高品质因数(Q)对于提高谐振纳米机电系统(NEMS)的性能至关重要。基于二维(2D)材料(如二硫化钼(MoS2))的 NEMS 谐振器具有高频率可调性、大动态范围和高灵敏度,但室温 Q 因子通常小于 1000。在这里,我们通过测量直径从 1 μm 到 8 μm 的 52 个干转移全夹紧圆形 MoS2 NEMS 谐振器,系统地研究了器件尺寸和表面非理想性对 Q 因子的影响,并将这些影响与应变调制耗散模型相结合,优化了 Q 因子。我们发现,Q 因子先随直径增大而增大,然后随直径减小而减小,2 微米直径器件的室温优化 Q 因子高达 3315 ± 115。通过使用拉曼光谱、原子力显微镜和扫描电子显微镜进行广泛的表征和分析,我们证明皱纹、残留物和气泡等表面非理想状态对降低 Q 因子尤其重要,特别是对较大的悬浮膜而言,而表面平坦光滑的谐振器通常具有较大的 Q 因子。为了进一步优化 Q 因子,我们测量了 Q 因子与栅极电压的关系并建立了模型,结果表明,较小的直流和射频(RF)驱动电压总是会导致较高的 Q 因子,这与应变调制耗散模型是一致的。Q因子的优化为设计用于超灵敏传感器、高效射频通信以及低功耗存储器和计算的高Q值二维NEMS谐振器提供了一条直接而有前景的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
Single-cell electro-mechanical shear flow deformability cytometry. Automating life science labs at the single-cell level through precise ultrasonic liquid sample ejection: PULSE. Bifunctional nanoprobe for simultaneous detection of intracellular reactive oxygen species and temperature in single cells. Sound innovations for biofabrication and tissue engineering. A novel gyroscope based on the slow surface acoustic wave in a phononic metamaterial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1