A piezoresistive-based 3-axial MEMS tactile sensor and integrated surgical forceps for gastrointestinal endoscopic minimally invasive surgery.

IF 7.3 1区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Microsystems & Nanoengineering Pub Date : 2024-09-27 DOI:10.1038/s41378-024-00774-6
Cheng Hou, Huxin Gao, Xiaoxiao Yang, Guangming Xue, Xiuli Zuo, Yanqing Li, Dongsheng Li, Bo Lu, Hongliang Ren, Huicong Liu, Lining Sun
{"title":"A piezoresistive-based 3-axial MEMS tactile sensor and integrated surgical forceps for gastrointestinal endoscopic minimally invasive surgery.","authors":"Cheng Hou, Huxin Gao, Xiaoxiao Yang, Guangming Xue, Xiuli Zuo, Yanqing Li, Dongsheng Li, Bo Lu, Hongliang Ren, Huicong Liu, Lining Sun","doi":"10.1038/s41378-024-00774-6","DOIUrl":null,"url":null,"abstract":"<p><p>In robotic-assisted surgery (RAS), traditional surgical instruments without sensing capability cannot perceive accurate operational forces during the task, and such drawbacks can be largely intensified when sophisticated tasks involving flexible and slender arms with small end-effectors, such as in gastrointestinal endoscopic surgery (GES). In this study, we propose a microelectromechanical system (MEMS) piezoresistive 3-axial tactile sensor for GES forceps, which can intuitively provide surgeons with online force feedback during robotic surgery. The MEMS fabrication process facilitates sensor chips with miniaturized dimensions. The fully encapsulated tactile sensors can be effortlessly integrated into miniature GES forceps, which feature a slender diameter of just 3.5 mm and undergo meticulous calibration procedures via the least squares method. Through experiments, the sensor's ability to accurately measure directional forces up to 1.2 N in the Z axis was validated, demonstrating an average relative error of only 1.18% compared with the full-scale output. The results indicate that this tactile sensor can provide effective 3-axial force sensing during surgical operations, such as grasping and pulling, and in ex vivo testing with a porcine stomach. The compact size, high precision, and integrability of the sensor establish solid foundations for clinical application in the operating theater.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"141"},"PeriodicalIF":7.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427553/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00774-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

In robotic-assisted surgery (RAS), traditional surgical instruments without sensing capability cannot perceive accurate operational forces during the task, and such drawbacks can be largely intensified when sophisticated tasks involving flexible and slender arms with small end-effectors, such as in gastrointestinal endoscopic surgery (GES). In this study, we propose a microelectromechanical system (MEMS) piezoresistive 3-axial tactile sensor for GES forceps, which can intuitively provide surgeons with online force feedback during robotic surgery. The MEMS fabrication process facilitates sensor chips with miniaturized dimensions. The fully encapsulated tactile sensors can be effortlessly integrated into miniature GES forceps, which feature a slender diameter of just 3.5 mm and undergo meticulous calibration procedures via the least squares method. Through experiments, the sensor's ability to accurately measure directional forces up to 1.2 N in the Z axis was validated, demonstrating an average relative error of only 1.18% compared with the full-scale output. The results indicate that this tactile sensor can provide effective 3-axial force sensing during surgical operations, such as grasping and pulling, and in ex vivo testing with a porcine stomach. The compact size, high precision, and integrability of the sensor establish solid foundations for clinical application in the operating theater.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于胃肠道内窥镜微创手术的基于压阻的三轴 MEMS 触觉传感器和集成手术钳。
在机器人辅助手术(RAS)中,没有传感能力的传统手术器械无法感知任务过程中的准确操作力,而当复杂的任务涉及灵活纤细的手臂和小型末端执行器时,例如胃肠道内窥镜手术(GES),这种缺点会在很大程度上加剧。在本研究中,我们提出了一种用于 GES 钳的微机电系统(MEMS)压阻式三轴触觉传感器,它能在机器人手术中直观地为外科医生提供在线力反馈。MEMS 制造工艺有利于传感器芯片的微型化。完全封装的触觉传感器可以毫不费力地集成到直径仅为 3.5 毫米的微型 GES 镊子中,并通过最小二乘法进行细致的校准。通过实验,该传感器准确测量 Z 轴方向力(最大 1.2 N)的能力得到了验证,与全尺寸输出相比,平均相对误差仅为 1.18%。结果表明,这种触觉传感器可以在抓取和拉动等外科手术操作过程中,以及在猪胃的体外测试中,提供有效的三轴力感应。该传感器体积小、精度高、可集成,为手术室的临床应用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microsystems & Nanoengineering
Microsystems & Nanoengineering Materials Science-Materials Science (miscellaneous)
CiteScore
12.00
自引率
3.80%
发文量
123
审稿时长
20 weeks
期刊介绍: Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.
期刊最新文献
Single-cell electro-mechanical shear flow deformability cytometry. Automating life science labs at the single-cell level through precise ultrasonic liquid sample ejection: PULSE. Bifunctional nanoprobe for simultaneous detection of intracellular reactive oxygen species and temperature in single cells. Sound innovations for biofabrication and tissue engineering. A novel gyroscope based on the slow surface acoustic wave in a phononic metamaterial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1