Spatial Cancer-Immune Phenotypes Predict Shorter Recurrence-Free Survival in the No Specific Molecular Profile Molecular Subtype of Endometrial Carcinoma
Dario de Biase , Jacopo Lenzi , Claudio Ceccarelli , Thais Maloberti , Marco Grillini , Camelia Alexandra Coadǎ , Claudio Zamagni , Pierandrea De Iaco , Anna Myriam Perrone , Donatella Santini , Martin Köbel , Cheng-Han Lee , Giovanni Tallini , Antonio De Leo
{"title":"Spatial Cancer-Immune Phenotypes Predict Shorter Recurrence-Free Survival in the No Specific Molecular Profile Molecular Subtype of Endometrial Carcinoma","authors":"Dario de Biase , Jacopo Lenzi , Claudio Ceccarelli , Thais Maloberti , Marco Grillini , Camelia Alexandra Coadǎ , Claudio Zamagni , Pierandrea De Iaco , Anna Myriam Perrone , Donatella Santini , Martin Köbel , Cheng-Han Lee , Giovanni Tallini , Antonio De Leo","doi":"10.1016/j.modpat.2024.100624","DOIUrl":null,"url":null,"abstract":"<div><div>Compartmentation of the immune response into 3 main spatial cancer-immune phenotypes (SCIs) – inflamed, excluded, and desert – has been proposed as the main predictor of response to immune checkpoint inhibitors in solid tumors. The objective of the study was to define and characterize the SCI in a consecutive series of 213 endometrial carcinomas (ECs) by correlating it with molecular subtypes, clinicopathologic features, and prognosis. Immunohistochemistry (IHC) and next-generation sequencing were used to assign surrogate molecular EC subtypes: <em>POLE</em> mutant (<em>POLE</em>), mismatch repair deficient (MMRd), <em>TP53</em> mutant (p53abn), and no specific molecular profile (NSMP). Immune cell markers (CD20, CD3, CD8, CD68, PD-L1) were assessed by IHC on whole sections and quantified by digital image analysis to define the 3 SCIs. ECs were stratified into 4 molecular subtypes: 17 (8.0%) <em>POLE</em>, 68 (31.9%) MMRd, 42 (19.7%) p53abn, and 86 (40.4%) NSMP. SCI determination showed 105 (49.3%) inflamed, 62 (29.1%) desert, and 46 (25.6%) excluded tumors. The inflamed phenotype was more prevalent in MMRd (64.7%) and <em>POLE</em> (76.5%) subtypes compared with NSMP (45.3%) and p53abn (21.4%). SCI revealed a strong correlation with disease-free survival in NSMP tumors: inflamed 96.2%, desert 83.2%, and excluded 40.5%. The SCI prognostic impact was also maintained in NSMP cases treated with adjuvant therapy resulting in a significant difference in recurrence between the inflamed and excluded phenotypes. To simplify SCI determination, a subset of immune cell markers was selected as appropriate to define the 3 SCI patterns: high intraepithelial CD8 for the inflamed phenotype; CD68, CD20, and PD-L1 to discriminate between desert and excluded tumors. The integration of SCI into molecular classification could be a promising opportunity to improve the prognostic risk stratification of patients and may guide the therapeutic approach, particularly in the NSMP subtype. Thus, the different patterns of immune response are a new prognostic parameter in the NSMP subtype.</div></div>","PeriodicalId":18706,"journal":{"name":"Modern Pathology","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Pathology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893395224002047","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Compartmentation of the immune response into 3 main spatial cancer-immune phenotypes (SCIs) – inflamed, excluded, and desert – has been proposed as the main predictor of response to immune checkpoint inhibitors in solid tumors. The objective of the study was to define and characterize the SCI in a consecutive series of 213 endometrial carcinomas (ECs) by correlating it with molecular subtypes, clinicopathologic features, and prognosis. Immunohistochemistry (IHC) and next-generation sequencing were used to assign surrogate molecular EC subtypes: POLE mutant (POLE), mismatch repair deficient (MMRd), TP53 mutant (p53abn), and no specific molecular profile (NSMP). Immune cell markers (CD20, CD3, CD8, CD68, PD-L1) were assessed by IHC on whole sections and quantified by digital image analysis to define the 3 SCIs. ECs were stratified into 4 molecular subtypes: 17 (8.0%) POLE, 68 (31.9%) MMRd, 42 (19.7%) p53abn, and 86 (40.4%) NSMP. SCI determination showed 105 (49.3%) inflamed, 62 (29.1%) desert, and 46 (25.6%) excluded tumors. The inflamed phenotype was more prevalent in MMRd (64.7%) and POLE (76.5%) subtypes compared with NSMP (45.3%) and p53abn (21.4%). SCI revealed a strong correlation with disease-free survival in NSMP tumors: inflamed 96.2%, desert 83.2%, and excluded 40.5%. The SCI prognostic impact was also maintained in NSMP cases treated with adjuvant therapy resulting in a significant difference in recurrence between the inflamed and excluded phenotypes. To simplify SCI determination, a subset of immune cell markers was selected as appropriate to define the 3 SCI patterns: high intraepithelial CD8 for the inflamed phenotype; CD68, CD20, and PD-L1 to discriminate between desert and excluded tumors. The integration of SCI into molecular classification could be a promising opportunity to improve the prognostic risk stratification of patients and may guide the therapeutic approach, particularly in the NSMP subtype. Thus, the different patterns of immune response are a new prognostic parameter in the NSMP subtype.
期刊介绍:
Modern Pathology, an international journal under the ownership of The United States & Canadian Academy of Pathology (USCAP), serves as an authoritative platform for publishing top-tier clinical and translational research studies in pathology.
Original manuscripts are the primary focus of Modern Pathology, complemented by impactful editorials, reviews, and practice guidelines covering all facets of precision diagnostics in human pathology. The journal's scope includes advancements in molecular diagnostics and genomic classifications of diseases, breakthroughs in immune-oncology, computational science, applied bioinformatics, and digital pathology.