Diagnosis of odontogenic keratocysts and non-keratocysts using edge attention convolution neural network.

IF 1.1 Q3 DENTISTRY, ORAL SURGERY & MEDICINE Minerva dental and oral science Pub Date : 2024-09-27 DOI:10.23736/S2724-6329.24.04874-5
Nivedan Yakolli, Divya B Shivanna, Roopa S Rao, Shankargouda Patil, Vincenzo Ronsivalle, Marco Cicciù, Giuseppe Minervini
{"title":"Diagnosis of odontogenic keratocysts and non-keratocysts using edge attention convolution neural network.","authors":"Nivedan Yakolli, Divya B Shivanna, Roopa S Rao, Shankargouda Patil, Vincenzo Ronsivalle, Marco Cicciù, Giuseppe Minervini","doi":"10.23736/S2724-6329.24.04874-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The study's objective was to develop an automated method for a histopathology recognition model for odontogenic keratocysts (OKC) and non-keratocyst (Non-KC) in jaw cyst sections stained with hematoxylin (H) and eosin (E) on a tiny bit of incisional biopsy prior to surgery.</p><p><strong>Methods: </strong>This hastens the speed and precision of diagnosis to patients. Also, navigates the clinicians with the therapeutic doctrine. To build such a system and to increase the accuracy of the existing models, the edge attention CNN model with Keras functional API was implemented which efficiently analyzes the texture information of the images. Approximately 2861 microscopic images at a 40X magnification were taken from 54 OKC, 23 Dentigerous cysts (DC), and 20 Radicular cysts.</p><p><strong>Results: </strong>The model was trained using both RGB and canny edge-detected images. The model gave a good accuracy of 96.8%, which is suitable for real-time. Histopathological images are better analyzed through textural features. The proposed edge attention CNN highlights the edges, making texture analysis more precise.</p><p><strong>Conclusions: </strong>The suggested method will work for OKC and Non-KC diagnosis automation systems. The use of a whole slide imaging scanner has the potential to increase accuracy and remove human bias.</p>","PeriodicalId":18709,"journal":{"name":"Minerva dental and oral science","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerva dental and oral science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23736/S2724-6329.24.04874-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The study's objective was to develop an automated method for a histopathology recognition model for odontogenic keratocysts (OKC) and non-keratocyst (Non-KC) in jaw cyst sections stained with hematoxylin (H) and eosin (E) on a tiny bit of incisional biopsy prior to surgery.

Methods: This hastens the speed and precision of diagnosis to patients. Also, navigates the clinicians with the therapeutic doctrine. To build such a system and to increase the accuracy of the existing models, the edge attention CNN model with Keras functional API was implemented which efficiently analyzes the texture information of the images. Approximately 2861 microscopic images at a 40X magnification were taken from 54 OKC, 23 Dentigerous cysts (DC), and 20 Radicular cysts.

Results: The model was trained using both RGB and canny edge-detected images. The model gave a good accuracy of 96.8%, which is suitable for real-time. Histopathological images are better analyzed through textural features. The proposed edge attention CNN highlights the edges, making texture analysis more precise.

Conclusions: The suggested method will work for OKC and Non-KC diagnosis automation systems. The use of a whole slide imaging scanner has the potential to increase accuracy and remove human bias.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用边缘注意卷积神经网络诊断牙源性角化囊肿和非角化囊肿
研究背景该研究的目的是开发一种组织病理学自动识别模型方法,用于识别手术前切口活检切片中经苏木精(H)和伊红(E)染色的牙源性角化囊肿(OKC)和非角化囊肿(Non-KC):这将加快患者诊断的速度和准确性。方法:这加快了患者诊断的速度和准确性,也为临床医生的治疗理论提供了导航。为了建立这样一个系统并提高现有模型的准确性,我们使用 Keras 功能 API 实现了边缘注意 CNN 模型,该模型可有效分析图像的纹理信息。我们从 54 个 OKC、23 个齿状囊肿(DC)和 20 个根状囊肿中提取了约 2861 张放大 40 倍的显微图像:使用 RGB 和 canny 边缘检测图像对模型进行了训练。该模型的准确率高达 96.8%,适合实时分析。通过纹理特征可以更好地分析组织病理学图像。提出的边缘关注 CNN 可以突出边缘,使纹理分析更加精确:结论:建议的方法适用于 OKC 和非 KC 诊断自动化系统。使用整张切片成像扫描仪有可能提高准确性并消除人为偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Minerva dental and oral science
Minerva dental and oral science DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
2.50
自引率
5.00%
发文量
61
期刊最新文献
In-silico immunoinformatic vaccine design for Treponema denticola ergothionase. Virtual reality in specialized dentistry: employing virtual reality for the alleviation of pain and anxiety in hereditary angioedema patients. Medico-legal considerations in immediate loading implantology: risks, responsibilities, and best practices. Restorative and endodontic clinical strategies during COVID-19 (SARS-CoV-2) pandemic: a revision of the literature. A simple method to identify implant sites in totally edentulous arches: a pilot study with thermo-printed templates used with cone beam computed tomography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1