On the aqueous origins of the condensation polymers of life

IF 38.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nature reviews. Chemistry Pub Date : 2024-09-27 DOI:10.1038/s41570-024-00648-5
Daniel Whitaker, Matthew W. Powner
{"title":"On the aqueous origins of the condensation polymers of life","authors":"Daniel Whitaker, Matthew W. Powner","doi":"10.1038/s41570-024-00648-5","DOIUrl":null,"url":null,"abstract":"Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins. Water is essential for life but paradoxically considered detrimental to the origins of life. Here, we discuss whether avoiding hydrolysed monomers and exploiting the chemical energy in prebiotic precursors may hold the missing key to unlocking biopolymer synthesis.","PeriodicalId":18849,"journal":{"name":"Nature reviews. Chemistry","volume":"8 11","pages":"817-832"},"PeriodicalIF":38.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews. Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41570-024-00648-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Water is essential for life as we know it, but it has paradoxically been considered inimical to the emergence of life. Proteins and nucleic acids have sustained evolution and life for billions of years, but both are condensation polymers, suggesting that their formation requires the elimination of water. This presents intrinsic challenges at the origins of life, including how condensation polymer synthesis can overcome the thermodynamic pressure of hydrolysis in water and how nucleophiles can kinetically outcompete water to yield condensation products. The answers to these questions lie in balancing thermodynamic activation and kinetic stability. For peptides, an effective strategy is to directly harness the energy trapped in prebiotic molecules, such as nitriles, and avoid the formation of fully hydrolysed monomers. In this Review, we discuss how chemical energy can be built into precursors, retained, and released selectively for polymer synthesis. Looking to the future, the outstanding goals include how nucleic acids can be synthesized, avoiding the formation of fully hydrolysed monomers and what caused information to flow from nucleic acids to proteins. Water is essential for life but paradoxically considered detrimental to the origins of life. Here, we discuss whether avoiding hydrolysed monomers and exploiting the chemical energy in prebiotic precursors may hold the missing key to unlocking biopolymer synthesis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生命缩合聚合物的水性起源。
水对于我们所知的生命来说是必不可少的,但矛盾的是,水却被认为与生命的出现背道而驰。蛋白质和核酸维持了数十亿年的进化和生命,但它们都是缩聚聚合物,这表明它们的形成需要消除水。这给生命起源带来了内在挑战,包括缩合聚合物合成如何克服水中水解的热力学压力,以及亲核物如何在动力学上与水竞争以产生缩合产物。这些问题的答案在于平衡热力学活化和动力学稳定性。对于多肽来说,有效的策略是直接利用腈类等前生物分子中蕴藏的能量,避免形成完全水解的单体。在本综述中,我们将讨论如何在聚合物合成过程中将化学能植入前体、保留并有选择性地释放出来。展望未来,突出的目标包括如何合成核酸,避免形成完全水解的单体,以及是什么导致信息从核酸流向蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature reviews. Chemistry
Nature reviews. Chemistry Chemical Engineering-General Chemical Engineering
CiteScore
52.80
自引率
0.80%
发文量
88
期刊介绍: Nature Reviews Chemistry is an online-only journal that publishes Reviews, Perspectives, and Comments on various disciplines within chemistry. The Reviews aim to offer balanced and objective analyses of selected topics, providing clear descriptions of relevant scientific literature. The content is designed to be accessible to recent graduates in any chemistry-related discipline while also offering insights for principal investigators and industry-based research scientists. Additionally, Reviews should provide the authors' perspectives on future directions and opinions regarding the major challenges faced by researchers in the field.
期刊最新文献
A career with an eye to the sky. Light-assisted functionalization of aryl radicals towards metal-free cross-coupling. Mixing metals with MXenes. Cracking the triple helix Presenting the tactile periodic table
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1