Maria-Bernadette Madel, Lidia Ibáñez, Thomas Ciucci, Julia Halper, Antoine Boutin, Ghada Beldi, Alice C Lavanant, Henri-Jean Garchon, Matthieu Rouleau, Christopher G Mueller, Laurent Peyrin-Biroulet, David Moulin, Claudine Blin-Wakkach, Abdelilah Wakkach
{"title":"Dysregulated myeloid differentiation in colitis is induced by inflammatory osteoclasts in a TNFα-dependent manner.","authors":"Maria-Bernadette Madel, Lidia Ibáñez, Thomas Ciucci, Julia Halper, Antoine Boutin, Ghada Beldi, Alice C Lavanant, Henri-Jean Garchon, Matthieu Rouleau, Christopher G Mueller, Laurent Peyrin-Biroulet, David Moulin, Claudine Blin-Wakkach, Abdelilah Wakkach","doi":"10.1016/j.mucimm.2024.09.005","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) is characterized by very severe intestinal inflammation associated with extra-intestinal manifestations. One of the most critical ones is bone destruction, which remains a major cause of morbidity and a risk factor for osteopenia and osteoporosis in IBD patients. In various mouse models of IBD, we and other have demonstrated concomitant bone loss due to a significant increase in osteoclast activity. Besides bone resorption, osteoclasts are known to control hematopoietic niches in vivo and modulate inflammatory responses in vitro, suggesting they may participate in chronic inflammation in vivo. Here, using different models of colitis, we showed that osteoclast inhibition significantly reduced disease severity and that induction of osteoclast differentiation by RANKL contributed to disease worsening. Our results demonstrate a direct link between osteoclast activity and myeloid cell accumulation in the intestine during colitis. RNAseq analysis of osteoclasts from colitic mice revealed overexpression of genes involved in the remodeling of hematopoietic stem cell niches. We also demonstrated that osteoclasts induced hematopoietic progenitor proliferation accompanied by a myeloid skewing in the early phases of colitis, which was confirmed in a model of RANKL-induced osteoclastogenesis. Mechanistically, inhibition of TNF-α reduced the induction of myeloid skewing by OCL both in vitro and in vivo. Lastly, we observed that osteoclastic activity and the proportion of myeloid cells in the blood are positively correlated in patients with Crohn's disease. Collectively, our results shed light on a new role of osteoclasts in colitis in vivo, demonstrating they exert their colitogenic activity through an early action on hematopoiesis, leading to an increase in myelopoiesis sustaining gut inflammation.</p>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mucimm.2024.09.005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammatory bowel disease (IBD) is characterized by very severe intestinal inflammation associated with extra-intestinal manifestations. One of the most critical ones is bone destruction, which remains a major cause of morbidity and a risk factor for osteopenia and osteoporosis in IBD patients. In various mouse models of IBD, we and other have demonstrated concomitant bone loss due to a significant increase in osteoclast activity. Besides bone resorption, osteoclasts are known to control hematopoietic niches in vivo and modulate inflammatory responses in vitro, suggesting they may participate in chronic inflammation in vivo. Here, using different models of colitis, we showed that osteoclast inhibition significantly reduced disease severity and that induction of osteoclast differentiation by RANKL contributed to disease worsening. Our results demonstrate a direct link between osteoclast activity and myeloid cell accumulation in the intestine during colitis. RNAseq analysis of osteoclasts from colitic mice revealed overexpression of genes involved in the remodeling of hematopoietic stem cell niches. We also demonstrated that osteoclasts induced hematopoietic progenitor proliferation accompanied by a myeloid skewing in the early phases of colitis, which was confirmed in a model of RANKL-induced osteoclastogenesis. Mechanistically, inhibition of TNF-α reduced the induction of myeloid skewing by OCL both in vitro and in vivo. Lastly, we observed that osteoclastic activity and the proportion of myeloid cells in the blood are positively correlated in patients with Crohn's disease. Collectively, our results shed light on a new role of osteoclasts in colitis in vivo, demonstrating they exert their colitogenic activity through an early action on hematopoiesis, leading to an increase in myelopoiesis sustaining gut inflammation.
期刊介绍:
Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.