Microbial remodeling of gut tryptophan metabolism and indole-3-lactate production regulate epithelial barrier repair and viral suppression in human and simian immunodeficiency virus infections.

IF 7.9 2区 医学 Q1 IMMUNOLOGY Mucosal Immunology Pub Date : 2025-01-31 DOI:10.1016/j.mucimm.2025.01.011
Clarissa Santos Rocha, Katie L Alexander, Carolina Herrera, Mariana G Weber, Irina Grishina, Lauren A Hirao, Dylan J Kramer, Juan Arredondo, Abigail Mende, Katti R Crakes, Anne N Fenton, Maria L Marco, David A Mills, John C Kappes, Lesley E Smythies, Paul Ziprin, Sumathi Sankaran-Walters, Phillip D Smith, Satya Dandekar
{"title":"Microbial remodeling of gut tryptophan metabolism and indole-3-lactate production regulate epithelial barrier repair and viral suppression in human and simian immunodeficiency virus infections.","authors":"Clarissa Santos Rocha, Katie L Alexander, Carolina Herrera, Mariana G Weber, Irina Grishina, Lauren A Hirao, Dylan J Kramer, Juan Arredondo, Abigail Mende, Katti R Crakes, Anne N Fenton, Maria L Marco, David A Mills, John C Kappes, Lesley E Smythies, Paul Ziprin, Sumathi Sankaran-Walters, Phillip D Smith, Satya Dandekar","doi":"10.1016/j.mucimm.2025.01.011","DOIUrl":null,"url":null,"abstract":"<p><p>Gut inflammatory diseases cause microbial dysbiosis. Human immunodeficiency virus-1 (HIV) infection disrupts intestinal integrity, subverts repair/renewal pathways, impairs mucosal immunity and propels microbial dysbiosis. However, microbial metabolic mechanisms driving repair mechanisms in virally inflamed gut are not well understood. We investigated the capability and mechanisms of gut microbes to restore epithelial barriers and mucosal immunity in virally inflamed gut by using a multipronged approach: an in vivo simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV/AIDS, ex vivo HIV-exposed human colorectal explants and primary human intestinal epithelial cells. SIV infection reprogrammed tryptophan (TRP) metabolism, increasing kynurenine catabolite levels that are associated with mucosal barrier disruption and immune suppression. Administration of Lactiplantibacillus plantarum or Bifidobacterium longum subsp. infantis into the SIV-inflamed gut lumen in vivo resulted in rapid reprogramming of microbial TRP metabolism towards indole-3-lactic acid (ILA) production. This shift accelerated epithelial repair and enhanced anti-viral defenses through induction of IL-22 signaling in mucosal T cells and aryl hydrocarbon receptor activation. Additionally, ILA treatment of human colorectal tissue explants ex vivo inhibited HIV replication by reducing mucosal inflammatory cytokine production and cell activation. Our findings underscore the therapeutic potential of microbial metabolic reprogramming of TRP-to-ILA and mechanisms in mitigating viral pathogenic effects and bolstering mucosal defenses for HIV eradication.</p>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mucimm.2025.01.011","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gut inflammatory diseases cause microbial dysbiosis. Human immunodeficiency virus-1 (HIV) infection disrupts intestinal integrity, subverts repair/renewal pathways, impairs mucosal immunity and propels microbial dysbiosis. However, microbial metabolic mechanisms driving repair mechanisms in virally inflamed gut are not well understood. We investigated the capability and mechanisms of gut microbes to restore epithelial barriers and mucosal immunity in virally inflamed gut by using a multipronged approach: an in vivo simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV/AIDS, ex vivo HIV-exposed human colorectal explants and primary human intestinal epithelial cells. SIV infection reprogrammed tryptophan (TRP) metabolism, increasing kynurenine catabolite levels that are associated with mucosal barrier disruption and immune suppression. Administration of Lactiplantibacillus plantarum or Bifidobacterium longum subsp. infantis into the SIV-inflamed gut lumen in vivo resulted in rapid reprogramming of microbial TRP metabolism towards indole-3-lactic acid (ILA) production. This shift accelerated epithelial repair and enhanced anti-viral defenses through induction of IL-22 signaling in mucosal T cells and aryl hydrocarbon receptor activation. Additionally, ILA treatment of human colorectal tissue explants ex vivo inhibited HIV replication by reducing mucosal inflammatory cytokine production and cell activation. Our findings underscore the therapeutic potential of microbial metabolic reprogramming of TRP-to-ILA and mechanisms in mitigating viral pathogenic effects and bolstering mucosal defenses for HIV eradication.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mucosal Immunology
Mucosal Immunology 医学-免疫学
CiteScore
16.60
自引率
3.80%
发文量
100
审稿时长
12 days
期刊介绍: Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.
期刊最新文献
Antibiotic-Induced dysbiosis of the ocular microbiome affects corneal circadian rhythmic activity in mice. Mitochondrial damage-associated molecular patterns: New perspectives for mitochondria and inflammatory bowel diseases. Tear duct M cells exacerbate allergic conjunctivitis by facilitating germinal-center reactions. There's no place like home: How local tissue microenvironments shape the function of innate lymphoid cells. Microbial remodeling of gut tryptophan metabolism and indole-3-lactate production regulate epithelial barrier repair and viral suppression in human and simian immunodeficiency virus infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1