Tuning the structure and properties of carbon cloth by FeCl3intercalation for efficient two-electron oxygen reduction catalysis.

IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2024-10-09 DOI:10.1088/1361-6528/ad8097
Yu Gao, Guangyuan Liang, Huanhuan Liang, Lijing Wang, Hongfang Du, Dezheng Liu, Liangxu Lin
{"title":"Tuning the structure and properties of carbon cloth by FeCl<sub>3</sub>intercalation for efficient two-electron oxygen reduction catalysis.","authors":"Yu Gao, Guangyuan Liang, Huanhuan Liang, Lijing Wang, Hongfang Du, Dezheng Liu, Liangxu Lin","doi":"10.1088/1361-6528/ad8097","DOIUrl":null,"url":null,"abstract":"<p><p>The advancement of various energy conversion and storage technologies hinges on the development of efficient and stable electrocatalysts for the oxygen reduction reaction (ORR). In this study, we report the enhancement of carbon cloth (CC) for robust ORR through an FeCl<sub>3</sub>intercalation reaction. Utilizing a thermal annealing method, FeCl<sub>3</sub>was intercalated into the graphite structure on the surface of CC, resulting in the creation of numerous defects and the incorporation of Fe species. These newly introduced defects play a pivotal role in activating the ORR via a two-electron pathway. The presence of Fe species further stabilizes the catalytic activity, leading to efficient and stable ORR performance. Our findings highlight the significance of defect engineering and Fe species incorporation in carbon-based materials for improved ORR catalysis and pave the way for the development of advanced electrocatalysts for energy-related applications.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad8097","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of various energy conversion and storage technologies hinges on the development of efficient and stable electrocatalysts for the oxygen reduction reaction (ORR). In this study, we report the enhancement of carbon cloth (CC) for robust ORR through an FeCl3intercalation reaction. Utilizing a thermal annealing method, FeCl3was intercalated into the graphite structure on the surface of CC, resulting in the creation of numerous defects and the incorporation of Fe species. These newly introduced defects play a pivotal role in activating the ORR via a two-electron pathway. The presence of Fe species further stabilizes the catalytic activity, leading to efficient and stable ORR performance. Our findings highlight the significance of defect engineering and Fe species incorporation in carbon-based materials for improved ORR catalysis and pave the way for the development of advanced electrocatalysts for energy-related applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过插层 FeCl3 调整碳布的结构和性能,实现高效的双电子氧还原催化。
各种能量转换和储存技术的发展取决于高效稳定的氧还原反应(ORR)电催化剂的开发。在本研究中,我们报告了通过 FeCl3 插层反应增强碳布以实现稳健 ORR 的情况。利用热退火方法,FeCl3 被插层到碳布表面的石墨结构中,从而产生了大量缺陷并掺入了铁元素。这些新引入的缺陷在通过双电子途径激活 ORR 方面发挥了关键作用。铁元素的存在进一步稳定了催化活性,从而实现了高效稳定的 ORR 性能。我们的研究结果突显了在碳基材料中加入缺陷工程和铁物种对改善 ORR 催化的重要意义,并为开发能源相关应用的先进电催化剂铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Friction-enhanced formation of Cu microwire on Si wafer. Quantum dots synthesis within ternary III-V nanowire towards light emitters in quantum photonic circuits: a review. Mapping nanoparticle formation and substrate heating effects: a fluence-resolved approach to pulsed laser-induced dewetting. Understanding the competing growth of 2D and 3D transition metal dichalcogenides in a chemical vapor deposition (CVD) reactor. Thermal expansion of boron nitride nanotubes and additively manufactured ceramic nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1