Preventing bacterial adhesion to skin by altering their physicochemical cell surface properties specifically.

IF 7.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY npj Biofilms and Microbiomes Pub Date : 2024-09-30 DOI:10.1038/s41522-024-00568-8
Xavier Janvier, Severine Jansen, Charleyne Prenom, Nabiha Khodabux, Francesca Zuttion, Cécile Duclairoir-Poc, Sylvie Cupferman, Ahmad Khodr
{"title":"Preventing bacterial adhesion to skin by altering their physicochemical cell surface properties specifically.","authors":"Xavier Janvier, Severine Jansen, Charleyne Prenom, Nabiha Khodabux, Francesca Zuttion, Cécile Duclairoir-Poc, Sylvie Cupferman, Ahmad Khodr","doi":"10.1038/s41522-024-00568-8","DOIUrl":null,"url":null,"abstract":"<p><p>The adhesion of bacteria to surfaces is associated with physicochemical and biological interactions. The present investigations provide new results about the differential adhesion levels of skin bacteria using a representative 3D skin model which mainly relies on the different physicochemical properties of the respective surfaces. Modulation of the adhesion of bacteria and thus their colonization, may occur by adjusting the physicochemical properties of the epidermal and bacterial surfaces. Lewis acid and hydrophobicity were the most strongly correlated parameters with the antiadhesion properties of the tested compounds. Modulation of physicochemical properties appears to be the primary driver of reduced Staphylococcus aureus adhesion in this study, with no significant changes observed in the expression of genes associated with classical adhesion pathways.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"10 1","pages":"94"},"PeriodicalIF":7.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-024-00568-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The adhesion of bacteria to surfaces is associated with physicochemical and biological interactions. The present investigations provide new results about the differential adhesion levels of skin bacteria using a representative 3D skin model which mainly relies on the different physicochemical properties of the respective surfaces. Modulation of the adhesion of bacteria and thus their colonization, may occur by adjusting the physicochemical properties of the epidermal and bacterial surfaces. Lewis acid and hydrophobicity were the most strongly correlated parameters with the antiadhesion properties of the tested compounds. Modulation of physicochemical properties appears to be the primary driver of reduced Staphylococcus aureus adhesion in this study, with no significant changes observed in the expression of genes associated with classical adhesion pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过改变细菌细胞表面的物理化学特性,防止细菌粘附在皮肤上。
细菌对表面的粘附与物理化学和生物相互作用有关。本研究利用具有代表性的三维皮肤模型提供了有关皮肤细菌不同粘附水平的新结果,这主要依赖于各自表面的不同理化特性。通过调整表皮和细菌表面的理化特性,可以改变细菌的粘附性,进而改变细菌的定植。路易斯酸和疏水性是与测试化合物的抗粘附性最密切相关的参数。在本研究中,理化性质的改变似乎是降低金黄色葡萄球菌粘附性的主要驱动因素,而在与经典粘附途径相关的基因表达中没有观察到明显的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Biofilms and Microbiomes
npj Biofilms and Microbiomes Immunology and Microbiology-Microbiology
CiteScore
12.10
自引率
3.30%
发文量
91
审稿时长
9 weeks
期刊介绍: npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.
期刊最新文献
Multiomics of yaks reveals significant contribution of microbiome into host metabolism. Minibioreactor arrays to model microbiome response to alcohol and tryptophan in the context of alcohol-associated liver disease. Staphylococcus epidermidis alters macrophage polarization and phagocytic uptake by extracellular DNA release in vitro. GOS enhances BDNF-mediated mammary gland development in pubertal mice via the gut-brain axis. Rumen microbiome and fat deposition in sheep: insights from a bidirectional mendelian randomization study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1