Kevin M Davies, Christelle M Andre, Samarth Kulshrestha, Yanfei Zhou, Kathy E Schwinn, Nick W Albert, David Chagné, John W van Klink, Marco Landi, John L Bowman
{"title":"The evolution of flavonoid biosynthesis.","authors":"Kevin M Davies, Christelle M Andre, Samarth Kulshrestha, Yanfei Zhou, Kathy E Schwinn, Nick W Albert, David Chagné, John W van Klink, Marco Landi, John L Bowman","doi":"10.1098/rstb.2023.0361","DOIUrl":null,"url":null,"abstract":"<p><p>The flavonoid pathway is characteristic of land plants and a central biosynthetic component enabling life in a terrestrial environment. Flavonoids provide tolerance to both abiotic and biotic stresses and facilitate beneficial relationships, such as signalling to symbiont microorganisms, or attracting pollinators and seed dispersal agents. The biosynthetic pathway shows great diversity across species, resulting principally from repeated biosynthetic gene duplication and neofunctionalization events during evolution. Such events may reflect a selection for new flavonoid structures with novel functions that enable occupancy of varied ecological niches. However, the biochemical and genetic diversity of the pathway also likely resulted from evolution along parallel trends across land plant lineages, producing variant compounds with similar biological functions. Analyses of the wide range of whole-plant genome sequences now available, particularly for archegoniate plants, have enabled proposals on which genes were ancestral to land plants and which arose within the land plant lineages. In this review, we discuss the emerging proposals for how the flavonoid pathway may have evolved and diversified. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0361","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The flavonoid pathway is characteristic of land plants and a central biosynthetic component enabling life in a terrestrial environment. Flavonoids provide tolerance to both abiotic and biotic stresses and facilitate beneficial relationships, such as signalling to symbiont microorganisms, or attracting pollinators and seed dispersal agents. The biosynthetic pathway shows great diversity across species, resulting principally from repeated biosynthetic gene duplication and neofunctionalization events during evolution. Such events may reflect a selection for new flavonoid structures with novel functions that enable occupancy of varied ecological niches. However, the biochemical and genetic diversity of the pathway also likely resulted from evolution along parallel trends across land plant lineages, producing variant compounds with similar biological functions. Analyses of the wide range of whole-plant genome sequences now available, particularly for archegoniate plants, have enabled proposals on which genes were ancestral to land plants and which arose within the land plant lineages. In this review, we discuss the emerging proposals for how the flavonoid pathway may have evolved and diversified. This article is part of the theme issue 'The evolution of plant metabolism'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.