{"title":"Understanding metabolic diversification in plants: branchpoints in the evolution of specialized metabolism.","authors":"Wenjuan Ji, Anne Osbourn, Zhenhua Liu","doi":"10.1098/rstb.2023.0359","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are chemical engineers par excellence. Collectively they make a vast array of structurally diverse specialized metabolites. The raw materials for building new pathways (genes encoding biosynthetic enzymes) are commonly recruited directly or indirectly from primary metabolism. Little is known about how new metabolic pathways and networks evolve in plants, or what key nodes contribute to branches that lead to the biosynthesis of diverse chemicals. Here we review the molecular mechanisms underlying the generation of biosynthetic branchpoints. We also consider examples in which new metabolites are formed through the joining of precursor molecules arising from different biosynthetic routes, a scenario that greatly increases both the diversity and complexity of specialized metabolism. Given the emerging importance of metabolic gene clustering in helping to identify new enzymes and pathways, we further cover the significance of biosynthetic gene clusters in relation to metabolic networks and dedicated biosynthetic pathways. In conclusion, an improved understanding of the branchpoints between metabolic pathways will be key in order to be able to predict and illustrate the complex structure of metabolic networks and to better understand the plasticity of plant metabolism. This article is part of the theme issue 'The evolution of plant metabolism'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439499/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0359","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants are chemical engineers par excellence. Collectively they make a vast array of structurally diverse specialized metabolites. The raw materials for building new pathways (genes encoding biosynthetic enzymes) are commonly recruited directly or indirectly from primary metabolism. Little is known about how new metabolic pathways and networks evolve in plants, or what key nodes contribute to branches that lead to the biosynthesis of diverse chemicals. Here we review the molecular mechanisms underlying the generation of biosynthetic branchpoints. We also consider examples in which new metabolites are formed through the joining of precursor molecules arising from different biosynthetic routes, a scenario that greatly increases both the diversity and complexity of specialized metabolism. Given the emerging importance of metabolic gene clustering in helping to identify new enzymes and pathways, we further cover the significance of biosynthetic gene clusters in relation to metabolic networks and dedicated biosynthetic pathways. In conclusion, an improved understanding of the branchpoints between metabolic pathways will be key in order to be able to predict and illustrate the complex structure of metabolic networks and to better understand the plasticity of plant metabolism. This article is part of the theme issue 'The evolution of plant metabolism'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.