Local mapping of root orientation traits by X-ray micro-CT and 3d image analysis: A study case on carrot seedlings grown in simulated vs real weightlessness.
L Gargiulo, G Mele, L G Izzo, L E Romano, G Aronne
{"title":"Local mapping of root orientation traits by X-ray micro-CT and 3d image analysis: A study case on carrot seedlings grown in simulated vs real weightlessness.","authors":"L Gargiulo, G Mele, L G Izzo, L E Romano, G Aronne","doi":"10.1186/s13007-024-01276-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Root phenotyping is particularly challenging because of complexity and inaccessibility of root apparatus. Orientation is one of the most important architectural traits of roots and its characterization is generally addressed using multiple approaches often based on overall measurements which are difficult to correlate to plant specific physiological aspects and its genetic features. Hence, a 3D image analysis approach, based on the recent method of Straumit, is proposed in this study to obtain a local mapping of root angles.</p><p><strong>Results: </strong>Proposed method was applied here on radicles of carrot seedlings grown in real weightlessness on the International Space Station (ISS) and on Earth simulated weightlessness by clinorotation. A reference experiment in 1 g static condition on Earth was also performed. Radicles were imaged by X-ray micro-CT and two novel root orientation traits were defined: the \"root angle to sowing plane\" (RASP) providing accurate angle distributions for each analysed radicle and the \"root orientation changes\" (ROC) number. The parameters of the RASP distributions and the ROC values did not exhibit any significant difference in orientation between radicles grown under clinorotation and on the ISS. Only a slight thickening in root corners was found in simulated vs real weightlessness. Such results showed that a simple uniaxial clinostat can be an affordable analog in experimental studies reckoning on weightless radicles growth.</p><p><strong>Conclusions: </strong>The proposed local orientation mapping approach can be extended also to different root systems providing a contribution in the challenging task of phenotyping complex and important plant structures such as roots.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"150"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01276-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Root phenotyping is particularly challenging because of complexity and inaccessibility of root apparatus. Orientation is one of the most important architectural traits of roots and its characterization is generally addressed using multiple approaches often based on overall measurements which are difficult to correlate to plant specific physiological aspects and its genetic features. Hence, a 3D image analysis approach, based on the recent method of Straumit, is proposed in this study to obtain a local mapping of root angles.
Results: Proposed method was applied here on radicles of carrot seedlings grown in real weightlessness on the International Space Station (ISS) and on Earth simulated weightlessness by clinorotation. A reference experiment in 1 g static condition on Earth was also performed. Radicles were imaged by X-ray micro-CT and two novel root orientation traits were defined: the "root angle to sowing plane" (RASP) providing accurate angle distributions for each analysed radicle and the "root orientation changes" (ROC) number. The parameters of the RASP distributions and the ROC values did not exhibit any significant difference in orientation between radicles grown under clinorotation and on the ISS. Only a slight thickening in root corners was found in simulated vs real weightlessness. Such results showed that a simple uniaxial clinostat can be an affordable analog in experimental studies reckoning on weightless radicles growth.
Conclusions: The proposed local orientation mapping approach can be extended also to different root systems providing a contribution in the challenging task of phenotyping complex and important plant structures such as roots.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.