Application of uniconazole in improving the high-throughput genetic transformation efficiency in maize

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Science Pub Date : 2024-09-28 DOI:10.1016/j.plantsci.2024.112270
Shengnan Liu , Jihui Qiao , Shuaisong Zhang , Minhui Lu , Yongqing Yang , Jinsheng Lai , Yan Guo , Yunlu Shi
{"title":"Application of uniconazole in improving the high-throughput genetic transformation efficiency in maize","authors":"Shengnan Liu ,&nbsp;Jihui Qiao ,&nbsp;Shuaisong Zhang ,&nbsp;Minhui Lu ,&nbsp;Yongqing Yang ,&nbsp;Jinsheng Lai ,&nbsp;Yan Guo ,&nbsp;Yunlu Shi","doi":"10.1016/j.plantsci.2024.112270","DOIUrl":null,"url":null,"abstract":"<div><div><em>Agrobacterium</em>-mediated genetic transformation is the most effective and widely used delivery system for candidate genes and genome editors in maize, which is an important crop with the largest planting area and the highest yield. Here, we used gibberellin synthesis inhibitor, uniconazole, to enhance the stem strength of regenerated plantlets resulting in a significantly increase from 11.6 % to 18.2 % in the percentage of regenerated plantlets, and the transformation frequency was also improved from 9.4 % to 15.6 % in the test experiments. The physiological condition of immature embryo is greatly affected by ear source, season and insect pests, while it can cause significant fluctuations in the transformation frequency. Our optimization works at the differentiation subculture stage, avoiding the impact on the physiological condition of immature embryo. So, it can be applicated to high-throughput genetic transformation in different seasons and different ear sources throughout the year. The productive experiment results indicated that the annual average transformation frequency significantly improved from 2.76 % to 7.14 % (approximately 2.6 folds improvement), and the tissue culture cycle was shortened from 115 days to 106 days by using optimized system. Our optimized genetic transformation system opens avenues for maize improvement based on transgenic and genome editing technology.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945224002978","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Agrobacterium-mediated genetic transformation is the most effective and widely used delivery system for candidate genes and genome editors in maize, which is an important crop with the largest planting area and the highest yield. Here, we used gibberellin synthesis inhibitor, uniconazole, to enhance the stem strength of regenerated plantlets resulting in a significantly increase from 11.6 % to 18.2 % in the percentage of regenerated plantlets, and the transformation frequency was also improved from 9.4 % to 15.6 % in the test experiments. The physiological condition of immature embryo is greatly affected by ear source, season and insect pests, while it can cause significant fluctuations in the transformation frequency. Our optimization works at the differentiation subculture stage, avoiding the impact on the physiological condition of immature embryo. So, it can be applicated to high-throughput genetic transformation in different seasons and different ear sources throughout the year. The productive experiment results indicated that the annual average transformation frequency significantly improved from 2.76 % to 7.14 % (approximately 2.6 folds improvement), and the tissue culture cycle was shortened from 115 days to 106 days by using optimized system. Our optimized genetic transformation system opens avenues for maize improvement based on transgenic and genome editing technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在提高玉米高通量遗传转化效率中应用联苯苄唑。
玉米是种植面积最大、产量最高的重要作物,农杆菌介导的遗传转化是玉米候选基因和基因组编辑最有效、应用最广泛的传递系统。在这里,我们使用赤霉素合成抑制剂--烯效唑来增强再生小苗的茎干强度,结果再生小苗的比例从 11.6% 显著提高到 18.2%,转化频率也从 9.4% 提高到 15.6%。未成熟胚的生理状况受穗源、季节和虫害的影响很大,同时也会导致转化频率的大幅波动。我们的优化方案在分化亚培养阶段就能发挥作用,避免了对未成熟胚胎生理状况的影响。因此,它可以应用于全年不同季节和不同耳源的高通量遗传转化。生产性实验结果表明,使用优化系统后,年平均转化率从 2.76% 显著提高到 7.14%(约提高 2.6 倍),组织培养周期从 115 天缩短到 106 天。我们的优化遗传转化系统为基于转基因和基因组编辑技术的玉米改良开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
期刊最新文献
Duplicate MADS-box genes with split roles and a genetic regulatory network of floral development in long-homostyle common buckwheat. Functional analysis of (E)-β-farnesene synthases involved in accumulation of (E)-β-farnesene in German chamomile (Matricaria chamomilla L.) Identification of the fructose 1,6-bisphosphate aldolase (FBA) family genes in maize and analysis of the phosphorylation regulation of ZmFBA8. Mutation of rice SM1 enhances solid leaf midrib formation and increases methane emissions Functional analysis of the extraplastidial TRX system in germination and early stages of development of Arabidopsis thaliana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1