Shengnan Liu , Jihui Qiao , Shuaisong Zhang , Minhui Lu , Yongqing Yang , Jinsheng Lai , Yan Guo , Yunlu Shi
{"title":"Application of uniconazole in improving the high-throughput genetic transformation efficiency in maize","authors":"Shengnan Liu , Jihui Qiao , Shuaisong Zhang , Minhui Lu , Yongqing Yang , Jinsheng Lai , Yan Guo , Yunlu Shi","doi":"10.1016/j.plantsci.2024.112270","DOIUrl":null,"url":null,"abstract":"<div><div><em>Agrobacterium</em>-mediated genetic transformation is the most effective and widely used delivery system for candidate genes and genome editors in maize, which is an important crop with the largest planting area and the highest yield. Here, we used gibberellin synthesis inhibitor, uniconazole, to enhance the stem strength of regenerated plantlets resulting in a significantly increase from 11.6 % to 18.2 % in the percentage of regenerated plantlets, and the transformation frequency was also improved from 9.4 % to 15.6 % in the test experiments. The physiological condition of immature embryo is greatly affected by ear source, season and insect pests, while it can cause significant fluctuations in the transformation frequency. Our optimization works at the differentiation subculture stage, avoiding the impact on the physiological condition of immature embryo. So, it can be applicated to high-throughput genetic transformation in different seasons and different ear sources throughout the year. The productive experiment results indicated that the annual average transformation frequency significantly improved from 2.76 % to 7.14 % (approximately 2.6 folds improvement), and the tissue culture cycle was shortened from 115 days to 106 days by using optimized system. Our optimized genetic transformation system opens avenues for maize improvement based on transgenic and genome editing technology.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945224002978","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Agrobacterium-mediated genetic transformation is the most effective and widely used delivery system for candidate genes and genome editors in maize, which is an important crop with the largest planting area and the highest yield. Here, we used gibberellin synthesis inhibitor, uniconazole, to enhance the stem strength of regenerated plantlets resulting in a significantly increase from 11.6 % to 18.2 % in the percentage of regenerated plantlets, and the transformation frequency was also improved from 9.4 % to 15.6 % in the test experiments. The physiological condition of immature embryo is greatly affected by ear source, season and insect pests, while it can cause significant fluctuations in the transformation frequency. Our optimization works at the differentiation subculture stage, avoiding the impact on the physiological condition of immature embryo. So, it can be applicated to high-throughput genetic transformation in different seasons and different ear sources throughout the year. The productive experiment results indicated that the annual average transformation frequency significantly improved from 2.76 % to 7.14 % (approximately 2.6 folds improvement), and the tissue culture cycle was shortened from 115 days to 106 days by using optimized system. Our optimized genetic transformation system opens avenues for maize improvement based on transgenic and genome editing technology.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.