Claudio Marcello Melini, Mariana Kikuti, Laura Bruner, Matt Allerson, Katie O'Brien, Chase Stahl, Brian Roggow, Paul Yeske, Brad Leuwerke, Mark Schwartz, Montserrat Torremorell, Cesar A Corzo
{"title":"Assessment of porcine reproductive and respiratory syndrome virus (PRRSV) farm surface contamination through environmental sampling.","authors":"Claudio Marcello Melini, Mariana Kikuti, Laura Bruner, Matt Allerson, Katie O'Brien, Chase Stahl, Brian Roggow, Paul Yeske, Brad Leuwerke, Mark Schwartz, Montserrat Torremorell, Cesar A Corzo","doi":"10.1186/s40813-024-00387-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>During the fall of 2020, the porcine reproductive and respiratory syndrome virus (PRRSV) L1C.5 variant emerged and rapidly spread throughout southern Minnesota generating questions regarding possible transmission routes. This study aimed to investigate whether PRRSV could be detected on surfaces inside and outside pig barns housing L1C.5 variant PRRSV-positive pigs to illustrate the potential for indirect transmission of PRRSV. Seven Midwestern U.S. PPRS-positive breeding or growing pig farms and one PRRS-negative farm were conveniently selected. Internal and external barn surfaces were wiped using a PBS moistened cloth and the resulting liquid was submitted to the University of Minnesota Veterinary Diagnostic Laboratory for PRRSV RT-PCR testing and virus isolation.</p><p><strong>Results: </strong>All (n = 26) samples from PRRSV-negative farm tested negative. Nineteen (13%) out of 143 samples from positive farms yielded positive RT-PCR results. Positive samples originated primarily from exhaust fan cones and doorknobs, followed by anteroom floor and mortality carts/sleds. Virus isolation attempted on two samples did not yield positive results.</p><p><strong>Conclusions: </strong>PRRSV contamination can occur on surfaces inside and outside pig barns that are in frequent contact with farm personnel. Although virus isolation attempts were negative, our results illustrate the potential for PRRSV to be transmitted indirectly through contaminated materials or farm personnel. The study supports the implementation of biosecurity practices by farm personnel to prevent the introduction of PRRSV into farms and the prevention of PRRSV transmission between farms.</p>","PeriodicalId":20352,"journal":{"name":"Porcine Health Management","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430232/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Porcine Health Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40813-024-00387-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: During the fall of 2020, the porcine reproductive and respiratory syndrome virus (PRRSV) L1C.5 variant emerged and rapidly spread throughout southern Minnesota generating questions regarding possible transmission routes. This study aimed to investigate whether PRRSV could be detected on surfaces inside and outside pig barns housing L1C.5 variant PRRSV-positive pigs to illustrate the potential for indirect transmission of PRRSV. Seven Midwestern U.S. PPRS-positive breeding or growing pig farms and one PRRS-negative farm were conveniently selected. Internal and external barn surfaces were wiped using a PBS moistened cloth and the resulting liquid was submitted to the University of Minnesota Veterinary Diagnostic Laboratory for PRRSV RT-PCR testing and virus isolation.
Results: All (n = 26) samples from PRRSV-negative farm tested negative. Nineteen (13%) out of 143 samples from positive farms yielded positive RT-PCR results. Positive samples originated primarily from exhaust fan cones and doorknobs, followed by anteroom floor and mortality carts/sleds. Virus isolation attempted on two samples did not yield positive results.
Conclusions: PRRSV contamination can occur on surfaces inside and outside pig barns that are in frequent contact with farm personnel. Although virus isolation attempts were negative, our results illustrate the potential for PRRSV to be transmitted indirectly through contaminated materials or farm personnel. The study supports the implementation of biosecurity practices by farm personnel to prevent the introduction of PRRSV into farms and the prevention of PRRSV transmission between farms.
期刊介绍:
Porcine Health Management (PHM) is an open access peer-reviewed journal that aims to publish relevant, novel and revised information regarding all aspects of swine health medicine and production.