Bursaphelenchus xylophilus Venom Allergen-Like Protein BxVAP1, Triggering Plant Defense-Related Programmed Cell Death, Plays an Important Role in Regulating Pinus massoniana Terpene Defense Responses.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2024-10-01 Epub Date: 2024-09-30 DOI:10.1094/PHYTO-01-24-0026-R
Yuqian Feng, Yongxia Li, Zhenkai Liu, Xuan Wang, Wei Zhang, Dongzhen Li, Xiaojian Wen, Xingyao Zhang
{"title":"<i>Bursaphelenchus xylophilus</i> Venom Allergen-Like Protein BxVAP1, Triggering Plant Defense-Related Programmed Cell Death, Plays an Important Role in Regulating <i>Pinus massoniana</i> Terpene Defense Responses.","authors":"Yuqian Feng, Yongxia Li, Zhenkai Liu, Xuan Wang, Wei Zhang, Dongzhen Li, Xiaojian Wen, Xingyao Zhang","doi":"10.1094/PHYTO-01-24-0026-R","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bursaphelenchus xylophilus</i> (pine wood nematode, PWN), a migratory plant-parasitic nematode, acts as an etiological agent, inflicting considerable damage to pine forests worldwide. Plant immunity constitutes a crucial factor in resisting various pathogenic invasions. The primary defensive responses of host pines against PWN infection encompass terpene accumulation, defense response-related gene expression, and programmed cell death. Venom allergen-like proteins (VAPs), as potential effectors, are instrumental in facilitating the successful colonization of PWNs. In this study, we investigated the inhibition of <i>B. xylophilus</i> VAP (<i>BxVAP1</i>) expression by RNA interference in vitro. Following <i>BxVAP1</i> silencing, the reproduction rate and migration rate of the PWN population in <i>Pinus massoniana</i> decreased, the expression of the α-pinene synthase gene was induced, other terpene synthase and pathogenesis-related genes were inhibited and delayed, the peak times and levels of terpene-related substances were changed, and the degree of cavitation in <i>P. massoniana</i> was diminished. Transient expression of BxVAP1 in <i>Nicotiana benthamiana</i> revealed that BxVAP1 was expressed in both the cell membrane and nucleus, inducing programmed cell death and the expression of pathogen-associated molecular pattern-triggered immunity marker genes (<i>NbAcre31</i> and <i>NbPTI5</i>). This study is the first to demonstrate that silencing the <i>BxVAP1</i> gene affects host defense responses, including terpenoid metabolism in <i>P. massoniana</i>, and that BxVAP1 can be recognized by <i>N. benthamiana</i> as an effector to trigger its innate immunity, expanding our understanding of the parasitic mechanism of <i>B. xylophilus</i>.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2331-2340"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-01-24-0026-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bursaphelenchus xylophilus (pine wood nematode, PWN), a migratory plant-parasitic nematode, acts as an etiological agent, inflicting considerable damage to pine forests worldwide. Plant immunity constitutes a crucial factor in resisting various pathogenic invasions. The primary defensive responses of host pines against PWN infection encompass terpene accumulation, defense response-related gene expression, and programmed cell death. Venom allergen-like proteins (VAPs), as potential effectors, are instrumental in facilitating the successful colonization of PWNs. In this study, we investigated the inhibition of B. xylophilus VAP (BxVAP1) expression by RNA interference in vitro. Following BxVAP1 silencing, the reproduction rate and migration rate of the PWN population in Pinus massoniana decreased, the expression of the α-pinene synthase gene was induced, other terpene synthase and pathogenesis-related genes were inhibited and delayed, the peak times and levels of terpene-related substances were changed, and the degree of cavitation in P. massoniana was diminished. Transient expression of BxVAP1 in Nicotiana benthamiana revealed that BxVAP1 was expressed in both the cell membrane and nucleus, inducing programmed cell death and the expression of pathogen-associated molecular pattern-triggered immunity marker genes (NbAcre31 and NbPTI5). This study is the first to demonstrate that silencing the BxVAP1 gene affects host defense responses, including terpenoid metabolism in P. massoniana, and that BxVAP1 can be recognized by N. benthamiana as an effector to trigger its innate immunity, expanding our understanding of the parasitic mechanism of B. xylophilus.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bursaphelenchus xylophilus 毒液过敏原样蛋白 BxVAP1 触发植物防御相关的程序性细胞死亡,在调控 Pinus massoniana 萜烯防御反应中发挥重要作用。
松材线虫(Bursaphelenchus xylophilus,PWN)是一种迁徙性植物寄生线虫,是一种病原体,对世界各地的松树林造成了相当大的破坏。植物免疫力是抵御各种病原体入侵的关键因素。寄主松树对 PWN 感染的主要防御反应包括萜烯积累、防御反应相关基因表达和程序性细胞死亡。毒液过敏原样蛋白(VAPs)作为潜在的效应因子,在促进松树病毒成功定殖方面起着重要作用。在本研究中,我们通过体外 RNA 干扰研究了嗜木虱 VAP(BxVAP1)的表达抑制情况。沉默 BxVAP1 后,Pinus massoniana 中的 PWN 群体的繁殖率和迁移率下降,α-蒎烯合成酶基因的表达被诱导,其他萜烯合成酶和致病相关基因的表达被抑制和延迟,萜烯相关物质的峰值时间和水平发生变化,P. massoniana 的空化程度降低。在烟草中瞬时表达 BxVAP1 发现,BxVAP1 在细胞膜和细胞核中均有表达,可诱导细胞程序性死亡和病原体相关分子模式触发免疫标记基因(NbAcre31 和 NbPTI5)的表达。这项研究首次证明了沉默 BxVAP1 基因会影响宿主的防御反应,包括 P. massoniana 的萜类化合物代谢,而且 BxVAP1 可被 N. benthamiana 识别为触发其先天免疫的效应物,从而拓展了我们对嗜木虱寄生机制的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
First Reported Sexual Recombination Between Pyrenophora teres Isolates from Barley and Barley Grass. Mapping Seedling and Adult Plant Leaf Rust Resistance Genes in the Durum Wheat Cultivar Strongfield and Other Triticum turgidum Lines. An Engineered Citrus Tristeza Virus (T36CA)-Based Vector Induces Gene-Specific RNA Silencing and Is Graft Transmissible to Commercial Citrus Varieties. Investigation of the effectiveness and molecular mechanisms of thiamin priming to control early blight disease in potato. Genetic Variability and Evolutionary Dynamics of Papaya Ringspot Virus and Papaya Leaf Distortion Mosaic Virus Infecting Feral Papaya in Hainan Island.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1