The role of training variability for model-based and model-free learning of an arbitrary visuomotor mapping.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS PLoS Computational Biology Pub Date : 2024-09-27 eCollection Date: 2024-09-01 DOI:10.1371/journal.pcbi.1012471
Carlos A Velázquez-Vargas, Nathaniel D Daw, Jordan A Taylor
{"title":"The role of training variability for model-based and model-free learning of an arbitrary visuomotor mapping.","authors":"Carlos A Velázquez-Vargas, Nathaniel D Daw, Jordan A Taylor","doi":"10.1371/journal.pcbi.1012471","DOIUrl":null,"url":null,"abstract":"<p><p>A fundamental feature of the human brain is its capacity to learn novel motor skills. This capacity requires the formation of vastly different visuomotor mappings. Using a grid navigation task, we investigated whether training variability would enhance the flexible use of a visuomotor mapping (key-to-direction rule), leading to better generalization performance. Experiments 1 and 2 show that participants trained to move between multiple start-target pairs exhibited greater generalization to both distal and proximal targets compared to participants trained to move between a single pair. This finding suggests that limited variability can impair decisions even in simple tasks without planning. In addition, during the training phase, participants exposed to higher variability were more inclined to choose options that, counterintuitively, moved the cursor away from the target while minimizing its actual distance under the constrained mapping, suggesting a greater engagement in model-based computations. In Experiments 3 and 4, we showed that the limited generalization performance in participants trained with a single pair can be enhanced by a short period of variability introduced early in learning or by incorporating stochasticity into the visuomotor mapping. Our computational modeling analyses revealed that a hybrid model between model-free and model-based computations with different mixing weights for the training and generalization phases, best described participants' data. Importantly, the differences in the model-based weights between our experimental groups, paralleled the behavioral findings during training and generalization. Taken together, our results suggest that training variability enables the flexible use of the visuomotor mapping, potentially by preventing the consolidation of habits due to the continuous demand to change responses.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012471","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental feature of the human brain is its capacity to learn novel motor skills. This capacity requires the formation of vastly different visuomotor mappings. Using a grid navigation task, we investigated whether training variability would enhance the flexible use of a visuomotor mapping (key-to-direction rule), leading to better generalization performance. Experiments 1 and 2 show that participants trained to move between multiple start-target pairs exhibited greater generalization to both distal and proximal targets compared to participants trained to move between a single pair. This finding suggests that limited variability can impair decisions even in simple tasks without planning. In addition, during the training phase, participants exposed to higher variability were more inclined to choose options that, counterintuitively, moved the cursor away from the target while minimizing its actual distance under the constrained mapping, suggesting a greater engagement in model-based computations. In Experiments 3 and 4, we showed that the limited generalization performance in participants trained with a single pair can be enhanced by a short period of variability introduced early in learning or by incorporating stochasticity into the visuomotor mapping. Our computational modeling analyses revealed that a hybrid model between model-free and model-based computations with different mixing weights for the training and generalization phases, best described participants' data. Importantly, the differences in the model-based weights between our experimental groups, paralleled the behavioral findings during training and generalization. Taken together, our results suggest that training variability enables the flexible use of the visuomotor mapping, potentially by preventing the consolidation of habits due to the continuous demand to change responses.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型和无模型学习任意视觉运动映射的训练变异性的作用。
人脑的一个基本特征是具有学习新运动技能的能力。这种能力需要形成千差万别的视觉运动映射。通过网格导航任务,我们研究了训练的可变性是否会提高视觉运动映射(键对方向规则)的灵活运用,从而带来更好的泛化表现。实验 1 和 2 显示,与只在一对起始目标间移动的参与者相比,接受在多对起始目标间移动训练的参与者对远端和近端目标的泛化能力更强。这一发现表明,即使在没有计划的简单任务中,有限的可变性也会影响决策。此外,在训练阶段,暴露于较高变异性的参与者更倾向于选择那些与直觉相反的选项,即光标远离目标,同时在受限映射下使其实际距离最小化,这表明他们更多地参与了基于模型的计算。在实验 3 和 4 中,我们发现,通过在学习早期引入短时间的可变性,或在视觉运动映射中加入随机性,可以提高受试者在单一配对训练中有限的泛化表现。我们的计算模型分析表明,无模型计算和基于模型计算的混合模型,以及训练和泛化阶段不同的混合权重,最能描述参与者的数据。重要的是,实验组之间基于模型计算权重的差异与训练和泛化过程中的行为发现相吻合。综上所述,我们的研究结果表明,训练的可变性可以灵活使用视觉运动映射,从而防止由于不断要求改变反应而导致的习惯巩固。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PLoS Computational Biology
PLoS Computational Biology BIOCHEMICAL RESEARCH METHODS-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.10
自引率
4.70%
发文量
820
审稿时长
2.5 months
期刊介绍: PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines. Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights. Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology. Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.
期刊最新文献
A computational analysis of the oncogenic and anti-tumor immunity role of P4HA3 in human cancers. Assessing the effect of model specification and prior sensitivity on Bayesian tests of temporal signal. During haptic communication, the central nervous system compensates distinctly for delay and noise. Structure-aware annotation of leucine-rich repeat domains. A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1