Sulei Zhang, Jun Sun, Shuaihang Guo, Yichen Wang, Yuheng Zhang, Jiao Lei, Xiaoli Liu, Hong Chen
{"title":"Balancing functions of antifouling, nitric oxide release and vascular cell selectivity for enhanced endothelialization of assembled multilayers.","authors":"Sulei Zhang, Jun Sun, Shuaihang Guo, Yichen Wang, Yuheng Zhang, Jiao Lei, Xiaoli Liu, Hong Chen","doi":"10.1093/rb/rbae096","DOIUrl":null,"url":null,"abstract":"<p><p>Surface endothelialization is a promising way to improve the hemocompatibility of biomaterials. However, current surface endothelialization strategies have limitations. For example, various surface functions are not well balanced, leading to undesirable results, especially when multiple functional components are introduced. In this work, a multifunctional surface was constructed by balancing the functions of antifouling, nitric oxide (NO) release and endothelial cell promotion via layer-by-layer (LBL) self-assembly. Poly(sodium <i>p</i>-styrenesulfonate-<i>co-</i>oligo(ethylene glycol) methacrylate) (negatively charged) and polyethyleneimine (positively charged) were deposited on silicon substrates to construct multilayers by LBL self-assembly. Then, organic selenium, which has a NO-releasing function, and the cell-adhesive peptide Gly-Arg-Glu-Asp-Val-Tyr, which selectively promotes endothelial cells, were introduced on the assembled multilayers. Poly(oligo(ethylene glycol) methacrylate) is a hydrophilic component for antifouling properties, and poly(sodium <i>p</i>-styrenesulfonate) is a heparin analog that provides negative charges. By modulating the contents of poly(oligo(ethylene glycol) methacrylate) and poly(sodium <i>p-</i>styrenesulfonate) in the copolymers, the NO release rates catalyzed by the modified surfaces were regulated. Moreover, the behaviors of endothelial cells and smooth muscle cells on modified surfaces were well controlled. The optimized surface strongly promoted endothelial cells and inhibited smooth muscle cells to achieve endothelialization effectively.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae096"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422184/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae096","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Surface endothelialization is a promising way to improve the hemocompatibility of biomaterials. However, current surface endothelialization strategies have limitations. For example, various surface functions are not well balanced, leading to undesirable results, especially when multiple functional components are introduced. In this work, a multifunctional surface was constructed by balancing the functions of antifouling, nitric oxide (NO) release and endothelial cell promotion via layer-by-layer (LBL) self-assembly. Poly(sodium p-styrenesulfonate-co-oligo(ethylene glycol) methacrylate) (negatively charged) and polyethyleneimine (positively charged) were deposited on silicon substrates to construct multilayers by LBL self-assembly. Then, organic selenium, which has a NO-releasing function, and the cell-adhesive peptide Gly-Arg-Glu-Asp-Val-Tyr, which selectively promotes endothelial cells, were introduced on the assembled multilayers. Poly(oligo(ethylene glycol) methacrylate) is a hydrophilic component for antifouling properties, and poly(sodium p-styrenesulfonate) is a heparin analog that provides negative charges. By modulating the contents of poly(oligo(ethylene glycol) methacrylate) and poly(sodium p-styrenesulfonate) in the copolymers, the NO release rates catalyzed by the modified surfaces were regulated. Moreover, the behaviors of endothelial cells and smooth muscle cells on modified surfaces were well controlled. The optimized surface strongly promoted endothelial cells and inhibited smooth muscle cells to achieve endothelialization effectively.
表面内皮化是改善生物材料血液相容性的一种可行方法。然而,目前的表面内皮化策略有其局限性。例如,各种表面功能不能很好地平衡,导致不良结果,尤其是当引入多种功能成分时。在这项工作中,通过逐层自组装(LBL)技术平衡了防污、一氧化氮(NO)释放和内皮细胞促进等功能,构建了一种多功能表面。在硅基底上沉积聚(对苯乙烯磺酸钠-偶氮(乙二醇)甲基丙烯酸酯)(带负电荷)和聚乙烯亚胺(带正电荷),通过 LBL 自组装构建多层表面。然后,在组装好的多层膜上引入具有释放 NO 功能的有机硒和选择性促进内皮细胞的细胞粘附肽 Gly-Arg-Glu-Asp-Val-Tyr。聚(低聚(乙二醇)甲基丙烯酸酯)是一种具有防污性能的亲水性成分,而聚(对苯乙烯磺酸钠)则是一种提供负电荷的肝素类似物。通过调节共聚物中聚(低聚(乙二醇)甲基丙烯酸酯)和聚(对苯乙烯磺酸钠)的含量,可以调节改性表面催化的 NO 释放率。此外,内皮细胞和平滑肌细胞在改性表面上的行为也得到了很好的控制。优化后的表面能有效促进内皮细胞和抑制平滑肌细胞实现内皮化。
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.