Triple-Camera Rectification for Depth Estimation Sensor.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL Sensors Pub Date : 2024-09-20 DOI:10.3390/s24186100
Minkyung Jeon, Jinhong Park, Jin-Woo Kim, Sungmin Woo
{"title":"Triple-Camera Rectification for Depth Estimation Sensor.","authors":"Minkyung Jeon, Jinhong Park, Jin-Woo Kim, Sungmin Woo","doi":"10.3390/s24186100","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we propose a novel rectification method for three cameras using a single image for depth estimation. Stereo rectification serves as a fundamental preprocessing step for disparity estimation in stereoscopic cameras. However, off-the-shelf depth cameras often include an additional RGB camera for creating 3D point clouds. Existing rectification methods only align two cameras, necessitating an additional rectification and remapping process to align the third camera. Moreover, these methods require multiple reference checkerboard images for calibration and aim to minimize alignment errors, but often result in rotated images when there is significant misalignment between two cameras. In contrast, the proposed method simultaneously rectifies three cameras in a single shot without unnecessary rotation. To achieve this, we designed a lab environment with checkerboard settings and obtained multiple sample images from the cameras. The optimization function, designed specifically for rectification in stereo matching, enables the simultaneous alignment of all three cameras while ensuring performance comparable to traditional methods. Experimental results with real camera samples demonstrate the benefits of the proposed method and provide a detailed analysis of unnecessary rotations in the rectified images.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435817/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24186100","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a novel rectification method for three cameras using a single image for depth estimation. Stereo rectification serves as a fundamental preprocessing step for disparity estimation in stereoscopic cameras. However, off-the-shelf depth cameras often include an additional RGB camera for creating 3D point clouds. Existing rectification methods only align two cameras, necessitating an additional rectification and remapping process to align the third camera. Moreover, these methods require multiple reference checkerboard images for calibration and aim to minimize alignment errors, but often result in rotated images when there is significant misalignment between two cameras. In contrast, the proposed method simultaneously rectifies three cameras in a single shot without unnecessary rotation. To achieve this, we designed a lab environment with checkerboard settings and obtained multiple sample images from the cameras. The optimization function, designed specifically for rectification in stereo matching, enables the simultaneous alignment of all three cameras while ensuring performance comparable to traditional methods. Experimental results with real camera samples demonstrate the benefits of the proposed method and provide a detailed analysis of unnecessary rotations in the rectified images.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于深度估计传感器的三摄像头整流。
在这项研究中,我们提出了一种新颖的矫正方法,可使用单幅图像对三台摄像机进行深度估计。立体矫正是立体摄像机进行差异估计的基本预处理步骤。然而,现成的深度相机通常包括一个额外的 RGB 相机,用于创建三维点云。现有的校正方法只能校正两个摄像头,因此需要额外的校正和重映射过程来校正第三个摄像头。此外,这些方法需要多个参考棋盘图像进行校准,目的是最大限度地减少对齐误差,但当两个摄像头之间存在明显不对齐时,往往会导致图像旋转。与此相反,我们提出的方法可在一次拍摄中同时校正三台相机,而不会产生不必要的旋转。为了实现这一目标,我们设计了一个具有棋盘设置的实验室环境,并从摄像机获取了多幅样本图像。专为立体匹配中的校正而设计的优化功能可以同时校正所有三台相机,同时确保性能与传统方法相当。使用真实相机样本的实验结果表明了所提方法的优势,并详细分析了矫正图像中不必要的旋转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Blockchain 6G-Based Wireless Network Security Management with Optimization Using Machine Learning Techniques. A Comprehensive Review on the Viscoelastic Parameters Used for Engineering Materials, Including Soft Materials, and the Relationships between Different Damping Parameters. A Mixed Approach for Clock Synchronization in Distributed Data Acquisition Systems. A Novel Topology of a 3 × 3 Series Phased Array Antenna with Aperture-Coupled Feeding. A Photoelectrochemical Biosensor Mediated by CRISPR/Cas13a for Direct and Specific Detection of MiRNA-21.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1