Fine mapping and identification of ERF transcription factor ERF017 as a candidate gene for cold tolerance in pumpkin.

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2024-09-25 DOI:10.1007/s00122-024-04720-y
Yarong Liao, Xiaoying Liu, Na Xu, Guangling Chen, Xinhui Qiao, Qinsheng Gu, Yu Wang, Jin Sun
{"title":"Fine mapping and identification of ERF transcription factor ERF017 as a candidate gene for cold tolerance in pumpkin.","authors":"Yarong Liao, Xiaoying Liu, Na Xu, Guangling Chen, Xinhui Qiao, Qinsheng Gu, Yu Wang, Jin Sun","doi":"10.1007/s00122-024-04720-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Two major QTLs for cold tolerance in pumpkin were localised, and CmoERF017 was identified as a key candidate gene within these QTLs via RNA-seq. Functional analysis revealed that CmoERF017 was a positive regulator of pumpkin in response to low-temperature stress. Low temperature is a key environmental factor that affects the protected cultivation of cucumber (Cucumis sativus L.) in winter, and the cold tolerance of cucumber/pumpkin-grafted seedlings depends on the rootstock. Pumpkin (Cucurbita spp.) has a well-developed root system, high resistance and wide adaptation, commonly used as rootstock for cucumber to improve the cold tolerance of grafted seedlings. This study used two high-generation inbred lines of Cucurbita moschata with significant differences in cold tolerance. We identified key candidate genes within the major cold tolerance QTL of rootstocks using QTL-seq and RNA-seq and investigated the function and molecular mechanisms of these genes in response to low-temperature stress. Results showed that QTL-seq located two cold tolerance QTLs, qCII-1 and qCII-2, while RNA-seq located 28 differentially expressed genes within these QTLs. CmoERF017 was finally identified as a key candidate gene. Functional validation results indicated that CmoERF017 is a positive regulator of pumpkin in response to low-temperature stress and affected root ABA synthesis and signalling by directly regulating the expression of SDR7 and ABI5. This study identified a key gene for low-temperature stress tolerance in rootstock pumpkin and clarified its role in the molecular mechanism of hormone-mediated plant cold tolerance. The study findings enrich the theoretical understanding of low-temperature stress tolerance in pumpkin and are valuable for the selection and breeding of cold-tolerant varieties of pumpkin used for rootstocks.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-024-04720-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Two major QTLs for cold tolerance in pumpkin were localised, and CmoERF017 was identified as a key candidate gene within these QTLs via RNA-seq. Functional analysis revealed that CmoERF017 was a positive regulator of pumpkin in response to low-temperature stress. Low temperature is a key environmental factor that affects the protected cultivation of cucumber (Cucumis sativus L.) in winter, and the cold tolerance of cucumber/pumpkin-grafted seedlings depends on the rootstock. Pumpkin (Cucurbita spp.) has a well-developed root system, high resistance and wide adaptation, commonly used as rootstock for cucumber to improve the cold tolerance of grafted seedlings. This study used two high-generation inbred lines of Cucurbita moschata with significant differences in cold tolerance. We identified key candidate genes within the major cold tolerance QTL of rootstocks using QTL-seq and RNA-seq and investigated the function and molecular mechanisms of these genes in response to low-temperature stress. Results showed that QTL-seq located two cold tolerance QTLs, qCII-1 and qCII-2, while RNA-seq located 28 differentially expressed genes within these QTLs. CmoERF017 was finally identified as a key candidate gene. Functional validation results indicated that CmoERF017 is a positive regulator of pumpkin in response to low-temperature stress and affected root ABA synthesis and signalling by directly regulating the expression of SDR7 and ABI5. This study identified a key gene for low-temperature stress tolerance in rootstock pumpkin and clarified its role in the molecular mechanism of hormone-mediated plant cold tolerance. The study findings enrich the theoretical understanding of low-temperature stress tolerance in pumpkin and are valuable for the selection and breeding of cold-tolerant varieties of pumpkin used for rootstocks.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ERF转录因子ERF017作为南瓜耐寒候选基因的精细图谱绘制和鉴定。
关键信息:通过RNA-seq定位了南瓜耐寒性的两个主要QTLs,并确定CmoERF017是这些QTLs中的一个关键候选基因。功能分析显示,CmoERF017是南瓜应对低温胁迫的正调控因子。低温是影响黄瓜(Cucumis sativus L.)冬季保护地栽培的关键环境因素,而黄瓜/南瓜嫁接苗的耐寒性取决于砧木。南瓜(Cucurbita spp.)根系发达,抗性强,适应性广,常用作黄瓜的砧木,以提高嫁接苗的耐寒性。本研究使用了两个耐寒性差异显著的葫芦高代近交系。我们利用QTL-seq和RNA-seq鉴定了砧木主要耐寒QTL中的关键候选基因,并研究了这些基因在响应低温胁迫时的功能和分子机制。结果表明,QTL-seq定位了两个耐寒QTL,即qCII-1和qCII-2,而RNA-seq定位了这些QTL中的28个差异表达基因。最终确定CmoERF017为关键候选基因。功能验证结果表明,CmoERF017是南瓜应对低温胁迫的正调控因子,通过直接调控SDR7和ABI5的表达影响根系ABA的合成和信号传导。该研究发现了砧木南瓜耐低温胁迫的关键基因,阐明了其在激素介导的植物耐低温分子机制中的作用。研究结果丰富了对南瓜耐低温胁迫的理论认识,对选育耐低温砧木南瓜品种具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
Leveraging genomic prediction to surpass current yield gains in spring barley. Fine mapping of QGPC.caas-7AL for grain protein content in bread wheat. Genetic loci associated with sorghum drought tolerance in multiple environments and their sensitivity to environmental covariables. Correction to: Identification and development of functional markers for purple grain genes in durum wheat (Triticum durum Desf.). Correction to: Identification and map‑based cloning of an EMS‑induced mutation in wheat gene TaSP1 related to spike architecture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1