Delivery Strategies of Growth Factors in Cartilage Tissue Engineering.

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Tissue Engineering. Part B, Reviews Pub Date : 2024-10-18 DOI:10.1089/ten.TEB.2024.0158
Rigele Ao, Wei Liang, Zimo Wang, Qiaoyu Li, Xingyi Pan, Yonghuan Zhen, Yang An
{"title":"Delivery Strategies of Growth Factors in Cartilage Tissue Engineering.","authors":"Rigele Ao, Wei Liang, Zimo Wang, Qiaoyu Li, Xingyi Pan, Yonghuan Zhen, Yang An","doi":"10.1089/ten.TEB.2024.0158","DOIUrl":null,"url":null,"abstract":"<p><p>Cartilage plays an important role in supporting soft tissues, reducing joint friction, and distributing pressure. However, its self-repair capacity is limited due to the lack of blood vessels, nerves, and lymphatic systems. Tissue engineering offers a potential solution to promote cartilage regeneration by combining scaffolds, seed cells, and growth factors. Among these, growth factors play a critical role in regulating cell proliferation, differentiation, and extracellular matrix remodeling. However, their instability, susceptibility to degradation and potential side effects limit their effectiveness. This article reviews the main growth factors used in cartilage tissue engineering and their delivery strategies, including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cell system-based delivery. Each method shows unique advantages in enhancing the delivery efficiency and specificity of growth factors but also faces challenges such as cost, biocompatibility, and safety. Future research needs to further optimize these strategies to achieve more efficient, safe, and economical delivery of growth factors, thereby advancing the clinical application of cartilage tissue engineering.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2024.0158","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Cartilage plays an important role in supporting soft tissues, reducing joint friction, and distributing pressure. However, its self-repair capacity is limited due to the lack of blood vessels, nerves, and lymphatic systems. Tissue engineering offers a potential solution to promote cartilage regeneration by combining scaffolds, seed cells, and growth factors. Among these, growth factors play a critical role in regulating cell proliferation, differentiation, and extracellular matrix remodeling. However, their instability, susceptibility to degradation and potential side effects limit their effectiveness. This article reviews the main growth factors used in cartilage tissue engineering and their delivery strategies, including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cell system-based delivery. Each method shows unique advantages in enhancing the delivery efficiency and specificity of growth factors but also faces challenges such as cost, biocompatibility, and safety. Future research needs to further optimize these strategies to achieve more efficient, safe, and economical delivery of growth factors, thereby advancing the clinical application of cartilage tissue engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
软骨组织工程中生长因子的输送策略。
软骨在支撑软组织、减少关节摩擦和分散压力方面发挥着重要作用。然而,由于缺乏血管、神经和淋巴系统,软骨的自我修复能力有限。组织工程通过结合支架、种子细胞和生长因子,为促进软骨再生提供了一种潜在的解决方案。其中,生长因子在调节细胞增殖、分化和细胞外基质重塑方面起着至关重要的作用。然而,生长因子的不稳定性、易降解性和潜在的副作用限制了其有效性。本文回顾了软骨组织工程中使用的主要生长因子及其递送策略,包括亲和性递送、载体辅助递送、刺激响应递送、空间结构递送和细胞系统递送。每种方法在提高生长因子的输送效率和特异性方面都显示出独特的优势,但也面临着成本、生物相容性和安全性等挑战。未来的研究需要进一步优化这些策略,以实现更高效、安全和经济的生长因子输送,从而推动软骨组织工程的临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
期刊最新文献
Biomechanics of Negative-Pressure-Assisted Liposuction and Their Influence on Fat Regeneration. Artificial Neural Networks: A New Frontier in Dental Tissue Regeneration. Efficacy of Fresh Versus Preserved Amniotic Membrane Grafts for Ocular Surface Reconstruction: Meta-analysis. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. Delivery Strategies of Growth Factors in Cartilage Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1