首页 > 最新文献

Tissue Engineering. Part B, Reviews最新文献

英文 中文
Surgical Bioengineering of the Microvasculature and Challenges in Clinical Translation.
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-04-02 DOI: 10.1089/ten.teb.2024.0242
Kevin Schlidt, Mohamadhossein Asgardoon, David A Febre-Alemañy, Jessica C El-Mallah, Olivia Waldron, Jazzmyn Dawes, Shailaja Agrawal, Mary E Landmesser, Dino J Ravnic

Tissue and organ dysfunction are major causes of worldwide morbidity and mortality with all medical specialties being impacted. Tissue engineering is an interdisciplinary field relying on the combination of scaffolds, cells, and biologically active molecules to restore form and function. However, clinical translation is still largely hampered by limitations in vascularization. Consequently, a thorough understanding of the microvasculature is warranted. This review provides an overview of (1) angiogenesis, including sprouting angiogenesis, intussusceptive angiogenesis, vascular remodeling, vascular co-option, and inosculation; (2) strategies for vascularized engineered tissue fabrication such as scaffold modulation, prevascularization, growth factor utilization, and cell-based approaches; (3) guided microvascular development via scaffold modulation with electromechanical cues, 3D bioprinting, and electrospinning; (4) surgical approaches to bridge the micro- and macrovasculatures in order to hasten perfusion; and (5) building specific vasculature in the context of tissue repair and organ transplantation, including skin, adipose, bone, liver, kidney, and lung. Our goal is to provide the reader with a translational overview that spans developmental biology, tissue engineering, and clinical surgery.

{"title":"Surgical Bioengineering of the Microvasculature and Challenges in Clinical Translation.","authors":"Kevin Schlidt, Mohamadhossein Asgardoon, David A Febre-Alemañy, Jessica C El-Mallah, Olivia Waldron, Jazzmyn Dawes, Shailaja Agrawal, Mary E Landmesser, Dino J Ravnic","doi":"10.1089/ten.teb.2024.0242","DOIUrl":"https://doi.org/10.1089/ten.teb.2024.0242","url":null,"abstract":"<p><p>Tissue and organ dysfunction are major causes of worldwide morbidity and mortality with all medical specialties being impacted. Tissue engineering is an interdisciplinary field relying on the combination of scaffolds, cells, and biologically active molecules to restore form and function. However, clinical translation is still largely hampered by limitations in vascularization. Consequently, a thorough understanding of the microvasculature is warranted. This review provides an overview of (1) angiogenesis, including sprouting angiogenesis, intussusceptive angiogenesis, vascular remodeling, vascular co-option, and inosculation; (2) strategies for vascularized engineered tissue fabrication such as scaffold modulation, prevascularization, growth factor utilization, and cell-based approaches; (3) guided microvascular development via scaffold modulation with electromechanical cues, 3D bioprinting, and electrospinning; (4) surgical approaches to bridge the micro- and macrovasculatures in order to hasten perfusion; and (5) building specific vasculature in the context of tissue repair and organ transplantation, including skin, adipose, bone, liver, kidney, and lung. Our goal is to provide the reader with a translational overview that spans developmental biology, tissue engineering, and clinical surgery.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143764999","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platelet Concentrates for Bone Regeneration: Cellular Composition Decides the Therapeutic Outcome.
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-03-20 DOI: 10.1089/ten.teb.2025.0042
S Amitha Banu, Khan Sharun
{"title":"Platelet Concentrates for Bone Regeneration: Cellular Composition Decides the Therapeutic Outcome.","authors":"S Amitha Banu, Khan Sharun","doi":"10.1089/ten.teb.2025.0042","DOIUrl":"https://doi.org/10.1089/ten.teb.2025.0042","url":null,"abstract":"","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143664489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Response to Dr. Leto Barone on "Advances in the Development of Auricular Cartilage Bioimplants".
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-11 DOI: 10.1089/ten.teb.2025.0023
Laura M Rendon-Romero, Augusto Rojas-Martinez
{"title":"Response to Dr. Leto Barone on \"Advances in the Development of Auricular Cartilage Bioimplants\".","authors":"Laura M Rendon-Romero, Augusto Rojas-Martinez","doi":"10.1089/ten.teb.2025.0023","DOIUrl":"https://doi.org/10.1089/ten.teb.2025.0023","url":null,"abstract":"","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Letter to the Editor as a Reply to "Advances in the Development of Auricular Cartilage Bioimplants".
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-11 DOI: 10.1089/ten.teb.2025.0012
Angelo A Leto Barone
{"title":"Letter to the Editor as a Reply to \"Advances in the Development of Auricular Cartilage Bioimplants\".","authors":"Angelo A Leto Barone","doi":"10.1089/ten.teb.2025.0012","DOIUrl":"https://doi.org/10.1089/ten.teb.2025.0012","url":null,"abstract":"","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143391942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interactions Between Mesenchymal Stem Cells and Microorganisms: Unraveling the Paradox for Enhanced Mesenchymal Stem Cell-Based Therapy.
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-06 DOI: 10.1089/ten.teb.2024.0334
Ensiyeh Kord-Parijaee, Elaheh Ferdosi-Shahandashti, Nasim Hafezi

Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic tool in stem cell-based therapy due to their immunomodulatory or regenerative characteristics. Nowadays, controlled application of nonpathogenic bacterial cells and their derivatives has shown promise in preconditioning and manipulating MSC behavior. This approach is being explored in various fields, including immunotherapy, tissue engineering, and cell therapy. However, recent discoveries have elucidated the complex interactions between MSCs and microorganisms, especially bacteria and viruses, raising concerns regarding the utility of MSCs in clinical applications. In this review, we discussed the interactions between MSCs and microorganisms and highlighted both positive and negative aspects. We also examined the use of bacterial-derived compounds in MSCs-mediated interventions. The balanced colonization of the microbiome in organs, such as the oral cavity, not only does not hinder therapeutic interventions but also could be crucial for achieving desirable outcomes. On the contrary, disturbances in the microbiome have been found to disturb the biological potential of MSCs, such as migration, osteogenic differentiation, and cell proliferation. Evidence also suggests that commensal bacteria, following certain interventions, can transition to a pathogenic state when interacting with MSCs, leading to acute inflammation. Indeed, the maintenance of homeostasis through various approaches, such as probiotic application, results in an optimal equilibrium during MSCs-based therapies. However, further investigation into this matter is imperative to identify efficacious interventions.

{"title":"Interactions Between Mesenchymal Stem Cells and Microorganisms: Unraveling the Paradox for Enhanced Mesenchymal Stem Cell-Based Therapy.","authors":"Ensiyeh Kord-Parijaee, Elaheh Ferdosi-Shahandashti, Nasim Hafezi","doi":"10.1089/ten.teb.2024.0334","DOIUrl":"https://doi.org/10.1089/ten.teb.2024.0334","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic tool in stem cell-based therapy due to their immunomodulatory or regenerative characteristics. Nowadays, controlled application of nonpathogenic bacterial cells and their derivatives has shown promise in preconditioning and manipulating MSC behavior. This approach is being explored in various fields, including immunotherapy, tissue engineering, and cell therapy. However, recent discoveries have elucidated the complex interactions between MSCs and microorganisms, especially bacteria and viruses, raising concerns regarding the utility of MSCs in clinical applications. In this review, we discussed the interactions between MSCs and microorganisms and highlighted both positive and negative aspects. We also examined the use of bacterial-derived compounds in MSCs-mediated interventions. The balanced colonization of the microbiome in organs, such as the oral cavity, not only does not hinder therapeutic interventions but also could be crucial for achieving desirable outcomes. On the contrary, disturbances in the microbiome have been found to disturb the biological potential of MSCs, such as migration, osteogenic differentiation, and cell proliferation. Evidence also suggests that commensal bacteria, following certain interventions, can transition to a pathogenic state when interacting with MSCs, leading to acute inflammation. Indeed, the maintenance of homeostasis through various approaches, such as probiotic application, results in an optimal equilibrium during MSCs-based therapies. However, further investigation into this matter is imperative to identify efficacious interventions.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decellularized Adipose Matrix for Soft Tissue Regeneration: Enhancing Angiogenesis and Adipogenesis.
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-06 DOI: 10.1089/ten.teb.2024.0321
Bradley A Melnick, Anmar Abu-Romman, Keenan S Fine, Natalia M Barron-Cervantes, Emily D Duckworth, Evangelia Chnari, Marc Long, Matthew D Ramsay, Madeline J O'Connor, Kelly C Ho, Antoinette T Nguyen, Gretchen A O'Connor, Abigail Uryga, Brigid M Coles, Robert D Galiano

Human decellularized adipose matrix (hDAM) has emerged as a promising, off-the-shelf option for soft tissue augmentation, providing a biocompatible scaffold that supports angiogenesis, adipogenesis, and volume retention with minimal immunogenicity. This systematic review synthesizes preclinical and clinical evidence on hDAM's regenerative potential, focusing on its capacity to integrate with host tissue and enhance volume retention. A comprehensive literature search was performed across multiple databases yielding 21 studies (14 preclinical, 6 clinical, and 1 combined) that met eligibility criteria. Risk of bias (RoB) was evaluated for animal and human studies using the Collaboration for the Assessment of Risks and Benefits of Anticancer Therapies (CAMARADES) and RoB In Nonrandomized Studies of Interventions (ROBINS-I) tools, respectively. Key preclinical findings indicate that hDAM supports progressive angiogenesis and adipogenesis, with significant weekly increases in vessel formation and adipocyte development. Linear mixed models were used to quantify these rates, showing an increase of 0.366% per week (p < 0.001) in the percentage of CD31+ positive area, and a 3.88% rise in perilipin-positive area per week (p < 0.001), representing angiogenesis and adipogenesis, respectively. Variability in regeneration rates underscores the influence of different hDAM preparation methods, such as enzyme-free decellularization and ultrasonication, which have been shown to improve cell compatibility and volume retention. Clinical studies demonstrate that hDAM achieves notable volume retention and patient satisfaction, particularly in facial and body contouring applications, while also improving skin texture, tone, and functionality. Compared with traditional autologous fat transfer and synthetic fillers, hDAM offers advantages in integration, resorption rates, and low complication risks, without donor site morbidity. Limitations of current studies include variability in hDAM preparation techniques, inconsistent outcome measures, and a paucity of long-term follow-up data. This review establishes hDAM as a safe and effective scaffold for soft tissue regeneration and provides a quantitative analysis of its regenerative timeline. Standardizing preparation methods and outcome measures, coupled with more randomized clinical trials, will be essential for optimizing treatment protocols. Future directions include exploring patient-specific factors and combination therapies to enhance hDAM's applicability in reconstructive and aesthetic surgery.

{"title":"Decellularized Adipose Matrix for Soft Tissue Regeneration: Enhancing Angiogenesis and Adipogenesis.","authors":"Bradley A Melnick, Anmar Abu-Romman, Keenan S Fine, Natalia M Barron-Cervantes, Emily D Duckworth, Evangelia Chnari, Marc Long, Matthew D Ramsay, Madeline J O'Connor, Kelly C Ho, Antoinette T Nguyen, Gretchen A O'Connor, Abigail Uryga, Brigid M Coles, Robert D Galiano","doi":"10.1089/ten.teb.2024.0321","DOIUrl":"https://doi.org/10.1089/ten.teb.2024.0321","url":null,"abstract":"<p><p>Human decellularized adipose matrix (hDAM) has emerged as a promising, off-the-shelf option for soft tissue augmentation, providing a biocompatible scaffold that supports angiogenesis, adipogenesis, and volume retention with minimal immunogenicity. This systematic review synthesizes preclinical and clinical evidence on hDAM's regenerative potential, focusing on its capacity to integrate with host tissue and enhance volume retention. A comprehensive literature search was performed across multiple databases yielding 21 studies (14 preclinical, 6 clinical, and 1 combined) that met eligibility criteria. Risk of bias (RoB) was evaluated for animal and human studies using the Collaboration for the Assessment of Risks and Benefits of Anticancer Therapies (CAMARADES) and RoB In Nonrandomized Studies of Interventions (ROBINS-I) tools, respectively. Key preclinical findings indicate that hDAM supports progressive angiogenesis and adipogenesis, with significant weekly increases in vessel formation and adipocyte development. Linear mixed models were used to quantify these rates, showing an increase of 0.366% per week (<i>p</i> < 0.001) in the percentage of CD31+ positive area, and a 3.88% rise in perilipin-positive area per week (<i>p</i> < 0.001), representing angiogenesis and adipogenesis, respectively. Variability in regeneration rates underscores the influence of different hDAM preparation methods, such as enzyme-free decellularization and ultrasonication, which have been shown to improve cell compatibility and volume retention. Clinical studies demonstrate that hDAM achieves notable volume retention and patient satisfaction, particularly in facial and body contouring applications, while also improving skin texture, tone, and functionality. Compared with traditional autologous fat transfer and synthetic fillers, hDAM offers advantages in integration, resorption rates, and low complication risks, without donor site morbidity. Limitations of current studies include variability in hDAM preparation techniques, inconsistent outcome measures, and a paucity of long-term follow-up data. This review establishes hDAM as a safe and effective scaffold for soft tissue regeneration and provides a quantitative analysis of its regenerative timeline. Standardizing preparation methods and outcome measures, coupled with more randomized clinical trials, will be essential for optimizing treatment protocols. Future directions include exploring patient-specific factors and combination therapies to enhance hDAM's applicability in reconstructive and aesthetic surgery.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143365848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thrombogenicity Assessment of Perfusable Tissue-Engineered Constructs: A Systematic Review. 可灌注组织工程构建物的血栓形成评估:系统综述。
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-05 DOI: 10.1089/ten.TEB.2024.0078
Luna Haderer, Yijun Zhou, Peter Tang, Assal Daneshgar, Brigitta Globke, Felix Krenzien, Anja Reutzel-Selke, Marie Weinhart, Johann Pratschke, Igor Maximillian Sauer, Karl Herbert Hillebrandt, Eriselda Keshi

Vascular surgery is facing a critical demand for novel vascular grafts that are biocompatible and thromboresistant. This urgency is particularly applicable to bypass operations involving small caliber vessels. In the realm of tissue engineering, the development of fully vascularized organs is promising as a solution to organ shortage for transplantation. To achieve this, it is essential to (re)construct a biocompatible and nonthrombogenic vascular network within these organs. In this systematic review, we identify, classify, and discuss basic principles and methods used to perform in vitro/ex vivo dynamic thrombogenicity testing of perfusable tissue-engineered organs and tissues. We conducted a preregistered systematic review of studies published in the last 23 years according to PRISMA-P Guidelines. This comprised a systematic data extraction, in-depth analysis, and risk of bias assessment of 116 included studies. We identified shaking (n = 28), flow loop (n = 17), ex vivo (arteriovenous shunt, n = 33), and dynamic in vitro models (n = 38) as the main approaches for thrombogenicity assessment. This comprehensive review reveals a prevalent lack of standardization and provides a valuable guide in the design of standardized experimental setups.

血管外科对具有生物相容性和抗血栓形成能力的新型血管移植物有着迫切的需求。这种迫切性尤其适用于涉及小口径血管的搭桥手术。在组织工程领域,开发完全血管化的器官是解决器官移植短缺问题的一大希望。要实现这一目标,必须在这些器官内(重新)构建生物相容性和非血栓形成的血管网络。在本系统综述中,我们对用于对可灌注组织工程器官和组织进行体外/体内动态血栓形成性测试的基本原则和方法进行了识别、分类和讨论。我们根据《PRISMA-P 指南》对过去 23 年中发表的研究进行了预先登记的系统综述,包括对 116 项纳入研究的系统数据提取、深入分析和偏倚风险评估。我们发现摇动模型(28 例)、环流模型(17 例)、体外模型(动静脉分流,33 例)和动态体外模型(38 例)是血栓形成性评估的主要方法。本综述揭示了普遍存在的缺乏标准化的问题,对设计标准化实验装置具有重要指导意义。
{"title":"Thrombogenicity Assessment of Perfusable Tissue-Engineered Constructs: A Systematic Review.","authors":"Luna Haderer, Yijun Zhou, Peter Tang, Assal Daneshgar, Brigitta Globke, Felix Krenzien, Anja Reutzel-Selke, Marie Weinhart, Johann Pratschke, Igor Maximillian Sauer, Karl Herbert Hillebrandt, Eriselda Keshi","doi":"10.1089/ten.TEB.2024.0078","DOIUrl":"10.1089/ten.TEB.2024.0078","url":null,"abstract":"<p><p>Vascular surgery is facing a critical demand for novel vascular grafts that are biocompatible and thromboresistant. This urgency is particularly applicable to bypass operations involving small caliber vessels. In the realm of tissue engineering, the development of fully vascularized organs is promising as a solution to organ shortage for transplantation. To achieve this, it is essential to (re)construct a biocompatible and nonthrombogenic vascular network within these organs. In this systematic review, we identify, classify, and discuss basic principles and methods used to perform <i>in vitro/ex vivo</i> dynamic thrombogenicity testing of perfusable tissue-engineered organs and tissues. We conducted a preregistered systematic review of studies published in the last 23 years according to PRISMA-P Guidelines. This comprised a systematic data extraction, in-depth analysis, and risk of bias assessment of 116 included studies. We identified shaking (<i>n</i> = 28), flow loop (<i>n</i> = 17), <i>ex vivo</i> (arteriovenous shunt, <i>n</i> = 33), and dynamic <i>in vitro</i> models (<i>n</i> = 38) as the main approaches for thrombogenicity assessment. This comprehensive review reveals a prevalent lack of standardization and provides a valuable guide in the design of standardized experimental setups.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Artificial Intelligence in Tissue Engineering. 人工智能在组织工程中的应用。
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2024-04-22 DOI: 10.1089/ten.TEB.2024.0022
Reza Bagherpour, Ghasem Bagherpour, Parvin Mohammadi

Tissue engineering, a crucial approach in medical research and clinical applications, aims to regenerate damaged organs. By combining stem cells, biochemical factors, and biomaterials, it encounters challenges in designing complex 3D structures. Artificial intelligence (AI) enhances tissue engineering through computational modeling, biomaterial design, cell culture optimization, and personalized medicine. This review explores AI applications in organ tissue engineering (bone, heart, nerve, skin, cartilage), employing various machine learning (ML) algorithms for data analysis, prediction, and optimization. Each section discusses common ML algorithms and specific applications, emphasizing the potential and challenges in advancing regenerative therapies.

组织工程是医学研究和临床应用的重要方法,旨在再生受损器官。通过结合干细胞、生化因子和生物材料,组织工程在设计复杂的三维结构时遇到了挑战。人工智能(AI)通过计算建模、生物材料设计、细胞培养优化和个性化医疗等手段,提高了组织工程学的水平。本综述探讨了人工智能在器官组织工程(骨、心脏、神经、皮肤、软骨)中的应用,采用各种机器学习(ML)算法进行数据分析、预测和优化。每一部分都讨论了常见的 ML 算法和具体应用,强调了推进再生疗法的潜力和挑战。
{"title":"Application of Artificial Intelligence in Tissue Engineering.","authors":"Reza Bagherpour, Ghasem Bagherpour, Parvin Mohammadi","doi":"10.1089/ten.TEB.2024.0022","DOIUrl":"10.1089/ten.TEB.2024.0022","url":null,"abstract":"<p><p>Tissue engineering, a crucial approach in medical research and clinical applications, aims to regenerate damaged organs. By combining stem cells, biochemical factors, and biomaterials, it encounters challenges in designing complex 3D structures. Artificial intelligence (AI) enhances tissue engineering through computational modeling, biomaterial design, cell culture optimization, and personalized medicine. This review explores AI applications in organ tissue engineering (bone, heart, nerve, skin, cartilage), employing various machine learning (ML) algorithms for data analysis, prediction, and optimization. Each section discusses common ML algorithms and specific applications, emphasizing the potential and challenges in advancing regenerative therapies.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"31-43"},"PeriodicalIF":5.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140869994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antiadhesion Biomaterials in Tendon Repair: Application Status and Future Prospect. 肌腱修复中的抗粘连生物材料:应用现状与未来前景。
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 Epub Date: 2024-04-12 DOI: 10.1089/ten.TEB.2023.0313
Peilin Zhang, Jiacheng Hu, Xiaonan Liu, Yanhao Li, Sa Pang, Shen Liu

The healing process after tendon injury is often accompanied by the formation of peritendinous adhesion, contributing to limb dysfunction and exerting detrimental effects on the individuals, as well as the development of society and economy. With the continuous development of material science, as well as the augmented understanding of tendon healing and the mechanism of peritendinous adhesion formation, materials used for the fabrication of barrier membranes against peritendinous adhesion emerge endlessly. In this article, based on the analysis of the mechanism of adhesion formation, we first review the commonly used natural and synthetic materials, along with their corresponding fabrication strategies, in order to furnish valuable insights for the future optimization and development of antiperitendinous adhesion barrier membranes. This article also discusses the interaction between antiadhesion materials and cells for ameliorating peritendinous adhesion.

肌腱损伤后的愈合过程往往伴随着腱周粘连的形成,导致肢体功能障碍,对个人以及社会和经济的发展造成不利影响。随着材料科学的不断发展,以及人们对肌腱愈合和腱周粘连形成机理认识的加深,用于制造腱周粘连屏障膜的材料层出不穷。本文在分析粘连形成机理的基础上,首先回顾了常用的天然材料和合成材料及其相应的制造策略,以期为未来抗腱周粘连屏障膜的优化和开发提供有价值的见解。本文还讨论了抗粘连材料与细胞之间的相互作用,以改善腱周粘连。
{"title":"Antiadhesion Biomaterials in Tendon Repair: Application Status and Future Prospect.","authors":"Peilin Zhang, Jiacheng Hu, Xiaonan Liu, Yanhao Li, Sa Pang, Shen Liu","doi":"10.1089/ten.TEB.2023.0313","DOIUrl":"10.1089/ten.TEB.2023.0313","url":null,"abstract":"<p><p>The healing process after tendon injury is often accompanied by the formation of peritendinous adhesion, contributing to limb dysfunction and exerting detrimental effects on the individuals, as well as the development of society and economy. With the continuous development of material science, as well as the augmented understanding of tendon healing and the mechanism of peritendinous adhesion formation, materials used for the fabrication of barrier membranes against peritendinous adhesion emerge endlessly. In this article, based on the analysis of the mechanism of adhesion formation, we first review the commonly used natural and synthetic materials, along with their corresponding fabrication strategies, in order to furnish valuable insights for the future optimization and development of antiperitendinous adhesion barrier membranes. This article also discusses the interaction between antiadhesion materials and cells for ameliorating peritendinous adhesion.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":"20-30"},"PeriodicalIF":5.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acknowledgment of Reviewers 2024.
IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Pub Date : 2025-02-01 DOI: 10.1089/ten.teb.2024.99452.revack
{"title":"Acknowledgment of Reviewers 2024.","authors":"","doi":"10.1089/ten.teb.2024.99452.revack","DOIUrl":"https://doi.org/10.1089/ten.teb.2024.99452.revack","url":null,"abstract":"","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"31 1","pages":"88-90"},"PeriodicalIF":5.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Tissue Engineering. Part B, Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1