{"title":"Source Apportionment and Risk Assessment of Potentially Toxic Elements Based on PCA and PMF Model in Black Soil Area of Hailun City, Northeast China.","authors":"Zhiwei Yang, Junbo Yu, Ke Yang, Qipeng Zhang, Yangyang Chen, Shaozhong Qiao","doi":"10.3390/toxics12090683","DOIUrl":null,"url":null,"abstract":"<p><p>This study assessed the presence of potentially toxic elements (PTEs) in China's northeastern black soil belt, an area with limited prior research. We collected 304 soil samples (0-20 cm) from Gonghe Town, Hailun City, and analyzed the PTE contamination degree using the single-factor pollution index and Nemerow pollution index. The results demonstrated that the mean concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were 11.16, 0.11, 65.29, 22.56, 0.03, 27.07, 26.09, and 66.01 mg/kg, respectively. Source apportionment was conducted via correlation analysis, principal component analysis, and positive matrix factorization, identifying four main sources: natural (33.2%), irrigation (29.5%), fuel (23.4%), and fertilizer (13.2%). The ecological risk index indicated a slight ecological risk, while the human health risk showed that non-carcinogenic risks were negligible and carcinogenic risks were acceptable. Our findings emphasize the need to prioritize controlling PTEs from fertilizer, particularly cadmium, and to a lesser extent, irrigation and fuel sources, focusing on As, Pband Hg. This research provides critical insights for policymakers aiming to manage PTE contamination in black soils.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 9","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11436113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12090683","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study assessed the presence of potentially toxic elements (PTEs) in China's northeastern black soil belt, an area with limited prior research. We collected 304 soil samples (0-20 cm) from Gonghe Town, Hailun City, and analyzed the PTE contamination degree using the single-factor pollution index and Nemerow pollution index. The results demonstrated that the mean concentrations of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were 11.16, 0.11, 65.29, 22.56, 0.03, 27.07, 26.09, and 66.01 mg/kg, respectively. Source apportionment was conducted via correlation analysis, principal component analysis, and positive matrix factorization, identifying four main sources: natural (33.2%), irrigation (29.5%), fuel (23.4%), and fertilizer (13.2%). The ecological risk index indicated a slight ecological risk, while the human health risk showed that non-carcinogenic risks were negligible and carcinogenic risks were acceptable. Our findings emphasize the need to prioritize controlling PTEs from fertilizer, particularly cadmium, and to a lesser extent, irrigation and fuel sources, focusing on As, Pband Hg. This research provides critical insights for policymakers aiming to manage PTE contamination in black soils.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.