{"title":"Targeting auditory verbal hallucinations in schizophrenia: effective connectivity changes induced by low-frequency rTMS.","authors":"Xie Yuanjun, Muzhen Guan, Tian Zhang, Chaozong Ma, Lingling Wang, Xinxin Lin, Chenxi Li, Zhongheng Wang, Ma Zhujing, Huaning Wang, Fang Peng","doi":"10.1038/s41398-024-03106-4","DOIUrl":null,"url":null,"abstract":"<p><p>Low-frequency repetitive transcranial magnetic stimulation (rTMS) has emerged as an effective intervention for alleviating symptoms of psychiatric disorders, particularly schizophrenia characterized by persistent auditory verbal hallucinations (AVH). However, the underlying mechanism of its action remain elusive. This study employed a randomized controlled design to investigate the impact of low-frequency rTMS on the neural connectivity at the stimulate site, specifically left temporoparietal junction (TPJ), in schizophrenia patients with suffering from AVH. Using Dynamic Causal Modeling (DCM), this study assessed changes in directed connectivity patterns and their correlations with clinical symptomatology. The results demonstrated significant improvements in AVH. Notably, significant changes in connectivity were observed, including both abnormal functional connectivity and effective connectivity among multiple brain regions. Particularly, the inhibition effects from the left precentral gyrus and left medial superior frontal gyrus to the left TPJ were closely associated with improvements in AVH. These findings underscore the potential of rTMS to effectively modulate neural pathways implicated in hallucinations in schizophrenia, thereby providing a neurobiological foundation for its therapeutic effects.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438995/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-024-03106-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Low-frequency repetitive transcranial magnetic stimulation (rTMS) has emerged as an effective intervention for alleviating symptoms of psychiatric disorders, particularly schizophrenia characterized by persistent auditory verbal hallucinations (AVH). However, the underlying mechanism of its action remain elusive. This study employed a randomized controlled design to investigate the impact of low-frequency rTMS on the neural connectivity at the stimulate site, specifically left temporoparietal junction (TPJ), in schizophrenia patients with suffering from AVH. Using Dynamic Causal Modeling (DCM), this study assessed changes in directed connectivity patterns and their correlations with clinical symptomatology. The results demonstrated significant improvements in AVH. Notably, significant changes in connectivity were observed, including both abnormal functional connectivity and effective connectivity among multiple brain regions. Particularly, the inhibition effects from the left precentral gyrus and left medial superior frontal gyrus to the left TPJ were closely associated with improvements in AVH. These findings underscore the potential of rTMS to effectively modulate neural pathways implicated in hallucinations in schizophrenia, thereby providing a neurobiological foundation for its therapeutic effects.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.