Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal.

IF 2.5 4区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Water Environment Research Pub Date : 2024-10-01 DOI:10.1002/wer.11137
Shazia Noorin, Tanushree Paul, Arnab Ghosh, Jurng-Jae Yee, Sung Hyuk Park
{"title":"Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal.","authors":"Shazia Noorin, Tanushree Paul, Arnab Ghosh, Jurng-Jae Yee, Sung Hyuk Park","doi":"10.1002/wer.11137","DOIUrl":null,"url":null,"abstract":"<p><p>Rising concerns over water scarcity, driven by industrialization and urbanization, necessitate the need for innovative solutions for wastewater treatment. This study focuses on developing an eco-friendly and cost-effective biochar-zeolite composite (BZC) adsorbent using waste materials-spent coffee ground biochar (CGB) and steel slag zeolite (SSZ). Initially, the biochar was prepared from spent coffee ground, and zeolite was prepared from steel slag; their co-pyrolysis resulted in novel adsorbent material. Later, the physicochemical characteristics of the BZC were examined, which showed irregular structure and well-defined pores. Dye removal studies were conducted, which indicate that BZC adsorption reach equilibrium in 2 h, exhibiting 95% removal efficiency compared to biochar (43.33%) and zeolite (74.58%). Moreover, the removal efficiencies of the novel BZC composite toward dyes methyl orange (MO) and crystal violet (CV) were found to be 97% and 99.53%, respectively. The kinetic studies performed with the dyes and phosphate with an adsorbent dosage of 0.5 g L<sup>-1</sup> suggest a pseudo-second-order model. Additionally, the reusability study of BZC proves to be effective through multiple adsorption and regeneration cycles. Initially, the phosphate removal remains high but eventually decreases from 92% to 70% in the third regeneration cycle, highlighting the robustness of the BZC. In conclusion, this study introduces a promising, cost-effective novel BZC adsorbent derived from waste materials as a sustainable solution for wastewater treatment. Emphasizing efficiency, reusability, and potential contributions to environmentally conscious water treatment, the findings highlight the composite's significance in addressing key challenges for the removal of toxic pollutants from the aqueous solutions. PRACTITIONER POINTS: A novel biochar-zeolite composite (BZC) material has been synthesized. Excellent removal of dyes by BZC (~95%) was achieved as compared to their counterparts The kinetic studies performed suggest a pseudo-second-order model. BZC proves to be highly effective for multiple adsorption studies. Excellent reusability showed potential as a robust adsorbent.</p>","PeriodicalId":23621,"journal":{"name":"Water Environment Research","volume":"96 10","pages":"e11137"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Environment Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/wer.11137","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rising concerns over water scarcity, driven by industrialization and urbanization, necessitate the need for innovative solutions for wastewater treatment. This study focuses on developing an eco-friendly and cost-effective biochar-zeolite composite (BZC) adsorbent using waste materials-spent coffee ground biochar (CGB) and steel slag zeolite (SSZ). Initially, the biochar was prepared from spent coffee ground, and zeolite was prepared from steel slag; their co-pyrolysis resulted in novel adsorbent material. Later, the physicochemical characteristics of the BZC were examined, which showed irregular structure and well-defined pores. Dye removal studies were conducted, which indicate that BZC adsorption reach equilibrium in 2 h, exhibiting 95% removal efficiency compared to biochar (43.33%) and zeolite (74.58%). Moreover, the removal efficiencies of the novel BZC composite toward dyes methyl orange (MO) and crystal violet (CV) were found to be 97% and 99.53%, respectively. The kinetic studies performed with the dyes and phosphate with an adsorbent dosage of 0.5 g L-1 suggest a pseudo-second-order model. Additionally, the reusability study of BZC proves to be effective through multiple adsorption and regeneration cycles. Initially, the phosphate removal remains high but eventually decreases from 92% to 70% in the third regeneration cycle, highlighting the robustness of the BZC. In conclusion, this study introduces a promising, cost-effective novel BZC adsorbent derived from waste materials as a sustainable solution for wastewater treatment. Emphasizing efficiency, reusability, and potential contributions to environmentally conscious water treatment, the findings highlight the composite's significance in addressing key challenges for the removal of toxic pollutants from the aqueous solutions. PRACTITIONER POINTS: A novel biochar-zeolite composite (BZC) material has been synthesized. Excellent removal of dyes by BZC (~95%) was achieved as compared to their counterparts The kinetic studies performed suggest a pseudo-second-order model. BZC proves to be highly effective for multiple adsorption studies. Excellent reusability showed potential as a robust adsorbent.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用废咖啡粉生物炭和钢渣沸石合成新型复合材料,以增强染料和磷酸盐的去除效果。
在工业化和城市化的推动下,人们对水资源短缺的担忧与日俱增,因此有必要寻找创新的废水处理解决方案。本研究的重点是利用废弃材料--咖啡渣生物炭(CGB)和钢渣沸石(SSZ),开发一种生态友好且经济高效的生物炭-沸石复合材料(BZC)吸附剂。最初,生物炭是用废咖啡粉制备的,而沸石则是用钢渣制备的。随后,对 BZC 的理化特性进行了研究,结果显示其结构不规则,孔隙清晰。染料去除研究表明,BZC 的吸附在 2 小时内达到平衡,与生物炭(43.33%)和沸石(74.58%)相比,去除率达到 95%。此外,新型 BZC 复合材料对染料甲基橙(MO)和水晶紫(CV)的去除率分别为 97% 和 99.53%。在吸附剂用量为 0.5 g L-1 时,对染料和磷酸盐进行的动力学研究表明,该模型为假二阶模型。此外,BZC 的可重复使用性研究证明,经过多次吸附和再生循环,BZC 是有效的。最初,磷酸盐的去除率仍然很高,但在第三个再生周期中,去除率最终从 92% 降至 70%,这凸显了 BZC 的稳健性。总之,本研究介绍了一种从废料中提取的前景广阔、经济高效的新型 BZC 吸附剂,它是一种可持续的废水处理解决方案。研究结果强调了该复合材料的高效性、可重复利用性以及对环保型水处理的潜在贡献,并强调了其在应对从水溶液中去除有毒污染物的关键挑战方面所具有的重要意义。实践点:合成了一种新型生物炭-沸石复合材料(BZC)。与同类材料相比,BZC 对染料的去除率极高(约 95%)。事实证明,BZC 对多重吸附研究非常有效。出色的可重复使用性显示了其作为一种坚固吸附剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Environment Research
Water Environment Research 环境科学-工程:环境
CiteScore
6.30
自引率
0.00%
发文量
138
审稿时长
11 months
期刊介绍: Published since 1928, Water Environment Research (WER) is an international multidisciplinary water resource management journal for the dissemination of fundamental and applied research in all scientific and technical areas related to water quality and resource recovery. WER''s goal is to foster communication and interdisciplinary research between water sciences and related fields such as environmental toxicology, agriculture, public and occupational health, microbiology, and ecology. In addition to original research articles, short communications, case studies, reviews, and perspectives are encouraged.
期刊最新文献
Strategy to develop and validate digital droplet PCR methods for global antimicrobial resistance wastewater surveillance. Removal of Fe2+ in coastal aquaculture source water by manganese ores: Batch experiments and breakthrough curve modeling. Biofilm characterization and dynamic simulation of advanced rope media reactor for the treatment of primary effluent. Fate of biosolids-bound PFAS through pyrolysis coupled with thermal oxidation for air emissions control. Insights into the efficiencies of different biological treatment systems for pharmaceuticals removal: A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1