StableMate: a statistical method to select stable predictors in omics data.

IF 4 Q1 GENETICS & HEREDITY NAR Genomics and Bioinformatics Pub Date : 2024-09-28 eCollection Date: 2024-09-01 DOI:10.1093/nargab/lqae130
Yidi Deng, Jiadong Mao, Jarny Choi, Kim-Anh Lê Cao
{"title":"StableMate: a statistical method to select stable predictors in omics data.","authors":"Yidi Deng, Jiadong Mao, Jarny Choi, Kim-Anh Lê Cao","doi":"10.1093/nargab/lqae130","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying statistical associations between biological variables is crucial to understanding molecular mechanisms. Most association studies are based on correlation or linear regression analyses, but the identified associations often lack reproducibility and interpretability due to the complexity and variability of omics datasets, making it difficult to translate associations into meaningful biological hypotheses. We developed StableMate, a regression framework, to address these challenges through a process of variable selection across heterogeneous datasets. Given datasets from different environments, such as experimental batches, StableMate selects environment-agnostic (stable) and environment-specific predictors in predicting the response of interest. Stable predictors represent robust functional dependencies with the response, and can be used to build regression models that make generalizable predictions in unseen environments. We applied StableMate to (i) RNA sequencing data of breast cancer to discover genes that consistently predict estrogen receptor expression across disease status; (ii) metagenomics data to identify microbial signatures that show persistent association with colon cancer across study cohorts; and (iii) single-cell RNA sequencing data of glioblastoma to discern signature genes associated with the development of pro-tumour microglia regardless of cell location. Our case studies demonstrate that StableMate is adaptable to regression and classification analyses and achieves comprehensive characterization of biological systems for different omics data types.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"6 4","pages":"lqae130"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11437361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqae130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying statistical associations between biological variables is crucial to understanding molecular mechanisms. Most association studies are based on correlation or linear regression analyses, but the identified associations often lack reproducibility and interpretability due to the complexity and variability of omics datasets, making it difficult to translate associations into meaningful biological hypotheses. We developed StableMate, a regression framework, to address these challenges through a process of variable selection across heterogeneous datasets. Given datasets from different environments, such as experimental batches, StableMate selects environment-agnostic (stable) and environment-specific predictors in predicting the response of interest. Stable predictors represent robust functional dependencies with the response, and can be used to build regression models that make generalizable predictions in unseen environments. We applied StableMate to (i) RNA sequencing data of breast cancer to discover genes that consistently predict estrogen receptor expression across disease status; (ii) metagenomics data to identify microbial signatures that show persistent association with colon cancer across study cohorts; and (iii) single-cell RNA sequencing data of glioblastoma to discern signature genes associated with the development of pro-tumour microglia regardless of cell location. Our case studies demonstrate that StableMate is adaptable to regression and classification analyses and achieves comprehensive characterization of biological systems for different omics data types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
StableMate:一种在 omics 数据中选择稳定预测因子的统计方法。
确定生物变量之间的统计关联对于了解分子机制至关重要。大多数关联研究都是基于相关性或线性回归分析,但由于 omics 数据集的复杂性和可变性,所发现的关联往往缺乏可重复性和可解释性,因此很难将关联转化为有意义的生物学假设。我们开发了回归框架 StableMate,通过在异构数据集中进行变量选择来应对这些挑战。给定来自不同环境(如实验批次)的数据集,StableMate 会选择环境无关(稳定)和环境特定的预测因子来预测感兴趣的反应。稳定的预测因子代表了与反应之间稳健的功能依赖关系,可用于建立回归模型,在未见过的环境中进行可推广的预测。我们将 StableMate 应用于:(i) 乳腺癌的 RNA 测序数据,以发现能持续预测不同疾病状态下雌激素受体表达的基因;(ii) 元基因组学数据,以确定在不同研究队列中显示出与结肠癌持续相关的微生物特征;(iii) 神经胶质母细胞瘤的单细胞 RNA 测序数据,以发现与促肿瘤小胶质细胞发展相关的特征基因,而不论细胞位置如何。我们的案例研究表明,StableMate 可用于回归和分类分析,并能针对不同的 omics 数据类型实现生物系统的全面特征描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
2.20%
发文量
95
审稿时长
15 weeks
期刊最新文献
Phenotype prediction in plants is improved by integrating large-scale transcriptomic datasets. AntiBody Sequence Database. Approximate nearest neighbor graph provides fast and efficient embedding with applications for large-scale biological data. Cell- and tissue-specific glycosylation pathways informed by single-cell transcriptomics. HiCrayon reveals distinct layers of multi-state 3D chromatin organization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1