Nikol Chantzi, Candace S Y Chan, Michail Patsakis, Akshatha Nayak, Austin Montgomery, Ioannis Mouratidis, Ilias Georgakopoulos-Soares
{"title":"Ribosomal DNA arrays are the most H-DNA rich element in the human genome.","authors":"Nikol Chantzi, Candace S Y Chan, Michail Patsakis, Akshatha Nayak, Austin Montgomery, Ioannis Mouratidis, Ilias Georgakopoulos-Soares","doi":"10.1093/nargab/lqaf012","DOIUrl":null,"url":null,"abstract":"<p><p>Repetitive DNA sequences can form noncanonical structures such as H-DNA. The new telomere-to-telomere genome assembly for the human genome has eliminated gaps, enabling examination of highly repetitive regions including centromeric and pericentromeric repeats and ribosomal DNA arrays. We find that H-DNA appears once every 25 000 base pairs in the human genome. Its distribution is highly inhomogeneous with H-DNA motif hotspots being detectable in acrocentric chromosomes. Ribosomal DNA arrays are the genomic element with a 40.94-fold H-DNA enrichment. Across acrocentric chromosomes, we report that 54.82% of H-DNA motifs found in these chromosomes are in rDNA array loci. We discover that binding sites for the PRDM9-B allele, a variant of the PRDM9 protein, are enriched for H-DNA motifs. We further investigate these findings through an analysis of PRDM-9 ChIP-seq data across various PRDM-9 alleles, observing an enrichment of H-DNA motifs in the binding sites of A-like alleles (including A, B, and N alleles), but not C-like alleles (including C and L4 alleles). The enrichment of H-DNA motifs at ribosomal DNA arrays is consistent in nonhuman great ape genomes. We conclude that ribosomal DNA arrays are the most enriched genomic loci for H-DNA sequences in human and other great ape genomes.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf012"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Repetitive DNA sequences can form noncanonical structures such as H-DNA. The new telomere-to-telomere genome assembly for the human genome has eliminated gaps, enabling examination of highly repetitive regions including centromeric and pericentromeric repeats and ribosomal DNA arrays. We find that H-DNA appears once every 25 000 base pairs in the human genome. Its distribution is highly inhomogeneous with H-DNA motif hotspots being detectable in acrocentric chromosomes. Ribosomal DNA arrays are the genomic element with a 40.94-fold H-DNA enrichment. Across acrocentric chromosomes, we report that 54.82% of H-DNA motifs found in these chromosomes are in rDNA array loci. We discover that binding sites for the PRDM9-B allele, a variant of the PRDM9 protein, are enriched for H-DNA motifs. We further investigate these findings through an analysis of PRDM-9 ChIP-seq data across various PRDM-9 alleles, observing an enrichment of H-DNA motifs in the binding sites of A-like alleles (including A, B, and N alleles), but not C-like alleles (including C and L4 alleles). The enrichment of H-DNA motifs at ribosomal DNA arrays is consistent in nonhuman great ape genomes. We conclude that ribosomal DNA arrays are the most enriched genomic loci for H-DNA sequences in human and other great ape genomes.