Comparison of Visual and Quantra Software Mammographic Density Assessment According to BI-RADS® in 2D and 3D Images.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2024-09-23 DOI:10.3390/jimaging10090238
Francesca Morciano, Cristina Marcazzan, Rossella Rella, Oscar Tommasini, Marco Conti, Paolo Belli, Andrea Spagnolo, Andrea Quaglia, Stefano Tambalo, Andreea Georgiana Trisca, Claudia Rossati, Francesca Fornasa, Giovanna Romanucci
{"title":"Comparison of Visual and Quantra Software Mammographic Density Assessment According to BI-RADS<sup>®</sup> in 2D and 3D Images.","authors":"Francesca Morciano, Cristina Marcazzan, Rossella Rella, Oscar Tommasini, Marco Conti, Paolo Belli, Andrea Spagnolo, Andrea Quaglia, Stefano Tambalo, Andreea Georgiana Trisca, Claudia Rossati, Francesca Fornasa, Giovanna Romanucci","doi":"10.3390/jimaging10090238","DOIUrl":null,"url":null,"abstract":"<p><p>Mammographic density (MD) assessment is subject to inter- and intra-observer variability. An automated method, such as Quantra software, could be a useful tool for an objective and reproducible MD assessment. Our purpose was to evaluate the performance of Quantra software in assessing MD, according to BI-RADS<sup>®</sup> Atlas Fifth Edition recommendations, verifying the degree of agreement with the gold standard, given by the consensus of two breast radiologists. A total of 5009 screening examinations were evaluated by two radiologists and analysed by Quantra software to assess MD. The agreement between the three assigned values was expressed as intraclass correlation coefficients (ICCs). The agreement between the software and the two readers (R1 and R2) was moderate with ICC values of 0.725 and 0.713, respectively. A better agreement was demonstrated between the software's assessment and the average score of the values assigned by the two radiologists, with an index of 0.793, which reflects a good correlation. Quantra software appears a promising tool in supporting radiologists in the MD assessment and could be part of a personalised screening protocol soon. However, some fine-tuning is needed to improve its accuracy, reduce its tendency to overestimate, and ensure it excludes high-density structures from its assessment.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433353/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10090238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mammographic density (MD) assessment is subject to inter- and intra-observer variability. An automated method, such as Quantra software, could be a useful tool for an objective and reproducible MD assessment. Our purpose was to evaluate the performance of Quantra software in assessing MD, according to BI-RADS® Atlas Fifth Edition recommendations, verifying the degree of agreement with the gold standard, given by the consensus of two breast radiologists. A total of 5009 screening examinations were evaluated by two radiologists and analysed by Quantra software to assess MD. The agreement between the three assigned values was expressed as intraclass correlation coefficients (ICCs). The agreement between the software and the two readers (R1 and R2) was moderate with ICC values of 0.725 and 0.713, respectively. A better agreement was demonstrated between the software's assessment and the average score of the values assigned by the two radiologists, with an index of 0.793, which reflects a good correlation. Quantra software appears a promising tool in supporting radiologists in the MD assessment and could be part of a personalised screening protocol soon. However, some fine-tuning is needed to improve its accuracy, reduce its tendency to overestimate, and ensure it excludes high-density structures from its assessment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据 BI-RADS® 在二维和三维图像中进行乳腺密度评估的视觉软件和 Quantra 软件的比较。
乳腺密度(MD)评估受观察者之间和观察者内部差异的影响。Quantra 软件等自动化方法是进行客观、可重复 MD 评估的有用工具。我们的目的是根据 BI-RADS® 图谱第五版的建议,评估 Quantra 软件在评估乳腺组织密度方面的性能,并验证其与两位乳腺放射科专家一致给出的金标准的吻合程度。两位放射科专家共对 5009 例筛查进行了评估,并通过 Quantra 软件对 MD 进行了分析。三个指定值之间的一致性以类内相关系数(ICC)表示。软件与两名读者(R1 和 R2)之间的一致性为中等,ICC 值分别为 0.725 和 0.713。软件的评估结果与两位放射科医生给出的平均值之间的一致性更好,指数为 0.793,反映了良好的相关性。Quantra 软件在支持放射科医生进行 MD 评估方面似乎是一个很有前途的工具,很快就能成为个性化筛查方案的一部分。不过,还需要进行一些微调,以提高其准确性,降低其高估倾向,并确保其在评估中排除高密度结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
Efficient End-to-End Convolutional Architecture for Point-of-Gaze Estimation. Comparison of Visual and Quantra Software Mammographic Density Assessment According to BI-RADS® in 2D and 3D Images. A Multi-Task Model for Pulmonary Nodule Segmentation and Classification. Convolutional Neural Network-Machine Learning Model: Hybrid Model for Meningioma Tumour and Healthy Brain Classification. Historical Blurry Video-Based Face Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1