{"title":"Effective image compression using hybrid DCT and hybrid capsule auto encoder for brain MR images","authors":"Bindu Puthentharayil Vikraman , Jabeena Afthab","doi":"10.1016/j.jvcir.2024.104296","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, image compression is gaining popularity in various fields because of its storage and transmission capability. This work aims to introduce a medical image (MI) compression model in brain magnetic resonance images (MRI) to mitigate issues in bandwidth and storage. Initially, pre-processing is done to neglect the noises in inputs using the Adaptive Linear Smoothing and Histogram Equalization (ALSHE) method. Then, the Region of Interest (ROI) and Non-ROI parts are separately segmented by the Optimized Fuzzy C-Means (OFCM) approach for reducing high complexity issues. Finally, a novel Hybrid Discrete Cosine Transform-Improved Zero Wavelet (DCT-IZW) is proposed for lossless compression and Hybrid Equilibrium Optimization-Capsule Auto Encoder (EO-CAE) for lossy compression. Then, the compressed ROI and Non-ROI images are added together, and the inverse operation of the compression process is performed to obtain the reconstructed image. This study used BRATS (2015, 2018) datasets for simulation and attained better performance than other existing methods.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104296"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002529","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, image compression is gaining popularity in various fields because of its storage and transmission capability. This work aims to introduce a medical image (MI) compression model in brain magnetic resonance images (MRI) to mitigate issues in bandwidth and storage. Initially, pre-processing is done to neglect the noises in inputs using the Adaptive Linear Smoothing and Histogram Equalization (ALSHE) method. Then, the Region of Interest (ROI) and Non-ROI parts are separately segmented by the Optimized Fuzzy C-Means (OFCM) approach for reducing high complexity issues. Finally, a novel Hybrid Discrete Cosine Transform-Improved Zero Wavelet (DCT-IZW) is proposed for lossless compression and Hybrid Equilibrium Optimization-Capsule Auto Encoder (EO-CAE) for lossy compression. Then, the compressed ROI and Non-ROI images are added together, and the inverse operation of the compression process is performed to obtain the reconstructed image. This study used BRATS (2015, 2018) datasets for simulation and attained better performance than other existing methods.
期刊介绍:
The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.