Marvin Kloß, Christian Weinberger, Michael Tiemann
{"title":"Water in the micropores of CPO-27 metal-organic frameworks: A comprehensive study","authors":"Marvin Kloß, Christian Weinberger, Michael Tiemann","doi":"10.1016/j.micromeso.2024.113352","DOIUrl":null,"url":null,"abstract":"<div><div>The metal-organic framework CPO-27 exhibits free coordination sites (open metal sites) and can be prepared with a wide range of metals that influence its properties. It is therefore an intriguing structure to study sorption phenomena. We analyze the water resistance and sorption behavior of these frameworks, with particular attention to the sorption mechanism in detail and the structure of the confined water molecules. For this purpose, we use manometric water vapor sorption analysis and FTIR spectroscopy. The respective metal center orchestrates both the adsorption behavior and the arrangement of the water molecules in the micropores of the framework. The extent to which water molecules form hydrogen bonds (with each other and with framework oxygen atoms) plays a crucial role in the stability of the framework towards water. Water adsorption is governed by the coordination of water molecules to the open metal sites (except for CPO-27-Cu) and subsequent H-bonding. A stepwise adsorption of water is observed, with significant differences depending on the choice of metal.</div></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"381 ","pages":"Article 113352"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181124003743","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The metal-organic framework CPO-27 exhibits free coordination sites (open metal sites) and can be prepared with a wide range of metals that influence its properties. It is therefore an intriguing structure to study sorption phenomena. We analyze the water resistance and sorption behavior of these frameworks, with particular attention to the sorption mechanism in detail and the structure of the confined water molecules. For this purpose, we use manometric water vapor sorption analysis and FTIR spectroscopy. The respective metal center orchestrates both the adsorption behavior and the arrangement of the water molecules in the micropores of the framework. The extent to which water molecules form hydrogen bonds (with each other and with framework oxygen atoms) plays a crucial role in the stability of the framework towards water. Water adsorption is governed by the coordination of water molecules to the open metal sites (except for CPO-27-Cu) and subsequent H-bonding. A stepwise adsorption of water is observed, with significant differences depending on the choice of metal.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.