Kuirong Feng , Pengyun Zhao , Na Li , Fenglong Chen , Jiayin Wang , Lingxin Meng , Wei Fan , Jingmei Xu
{"title":"Study on the effect mechanism of functional graphene oxide on the performance of polymer electrolyte membrane for fuel cells","authors":"Kuirong Feng , Pengyun Zhao , Na Li , Fenglong Chen , Jiayin Wang , Lingxin Meng , Wei Fan , Jingmei Xu","doi":"10.1016/j.memsci.2024.123359","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, amino-phosphate bifunctionalized graphene oxide (PA-GO) was successfully synthesized by amination reaction of graphene oxide followed by acid modification with hypophosphorous acid. A series of composite proton exchange membranes were successfully prepared by adding modified GO to sulfonated poly (aryl ether ketone sulfone) matrices containing carboxyl groups (C-SPAEKS). The prepared composite membranes were performed by a series of tests. The C-SPAEKS@1%PA-GO had the best performance, which was able to achieve the tensile strength of 42 MPa while possessing the high proton conductivity of 128.23 mS cm<sup>−1</sup> at 80 °C. In addition, the peak power density of C-SPAEKS@1%PA-GO reached 677.67 mW cm<sup>−2</sup> at a current density of 2082.8 mA cm<sup>−2</sup>, which was almost four times that of the pure membrane (166 mW cm<sup>−2</sup>). And after 44 h at a constant current density of 0.1 A cm<sup>−2</sup>, the C-SPAEKS@1%PA-GO membrane could still maintain 54.1 % of the original voltage. It can be seen that our work has achieved certain results, and the functionalized modification of graphene oxide could greatly improve the comprehensive performance of proton exchange membranes (PEMs).</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"713 ","pages":"Article 123359"},"PeriodicalIF":8.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824009530","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, amino-phosphate bifunctionalized graphene oxide (PA-GO) was successfully synthesized by amination reaction of graphene oxide followed by acid modification with hypophosphorous acid. A series of composite proton exchange membranes were successfully prepared by adding modified GO to sulfonated poly (aryl ether ketone sulfone) matrices containing carboxyl groups (C-SPAEKS). The prepared composite membranes were performed by a series of tests. The C-SPAEKS@1%PA-GO had the best performance, which was able to achieve the tensile strength of 42 MPa while possessing the high proton conductivity of 128.23 mS cm−1 at 80 °C. In addition, the peak power density of C-SPAEKS@1%PA-GO reached 677.67 mW cm−2 at a current density of 2082.8 mA cm−2, which was almost four times that of the pure membrane (166 mW cm−2). And after 44 h at a constant current density of 0.1 A cm−2, the C-SPAEKS@1%PA-GO membrane could still maintain 54.1 % of the original voltage. It can be seen that our work has achieved certain results, and the functionalized modification of graphene oxide could greatly improve the comprehensive performance of proton exchange membranes (PEMs).
期刊介绍:
The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.