Optimal s-level fractional factorial designs under baseline parameterization

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Statistical Planning and Inference Pub Date : 2024-09-27 DOI:10.1016/j.jspi.2024.106242
Zhaohui Yan, Shengli Zhao
{"title":"Optimal s-level fractional factorial designs under baseline parameterization","authors":"Zhaohui Yan,&nbsp;Shengli Zhao","doi":"10.1016/j.jspi.2024.106242","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we explore the minimum aberration criterion for <span><math><mi>s</mi></math></span>-level designs under baseline parameterization, called BP-MA. We give a complete search method and an incomplete search method to obtain the BP-MA (or nearly BP-MA) designs. The methodology has no restriction on <span><math><mi>s</mi></math></span>, the levels of the factors. The catalogues of (nearly) BP-MA designs with <span><math><mrow><mi>s</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn></mrow></math></span> levels are provided.</div></div>","PeriodicalId":50039,"journal":{"name":"Journal of Statistical Planning and Inference","volume":"236 ","pages":"Article 106242"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Planning and Inference","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000995","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we explore the minimum aberration criterion for s-level designs under baseline parameterization, called BP-MA. We give a complete search method and an incomplete search method to obtain the BP-MA (or nearly BP-MA) designs. The methodology has no restriction on s, the levels of the factors. The catalogues of (nearly) BP-MA designs with s=2,3,4,5 levels are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基线参数化条件下的最优 s 级分数因子设计
本文探讨了基线参数化条件下 s 级设计的最小畸变准则,称为 BP-MA。我们给出了一种完全搜索方法和一种不完全搜索方法来获得 BP-MA(或近似 BP-MA)设计。该方法对因子水平 s 没有限制。我们提供了 s=2,3,4,5 级的(近似)BP-MA 设计目录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Statistical Planning and Inference
Journal of Statistical Planning and Inference 数学-统计学与概率论
CiteScore
2.10
自引率
11.10%
发文量
78
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Planning and Inference offers itself as a multifaceted and all-inclusive bridge between classical aspects of statistics and probability, and the emerging interdisciplinary aspects that have a potential of revolutionizing the subject. While we maintain our traditional strength in statistical inference, design, classical probability, and large sample methods, we also have a far more inclusive and broadened scope to keep up with the new problems that confront us as statisticians, mathematicians, and scientists. We publish high quality articles in all branches of statistics, probability, discrete mathematics, machine learning, and bioinformatics. We also especially welcome well written and up to date review articles on fundamental themes of statistics, probability, machine learning, and general biostatistics. Thoughtful letters to the editors, interesting problems in need of a solution, and short notes carrying an element of elegance or beauty are equally welcome.
期刊最新文献
Estimation and group-feature selection in sparse mixture-of-experts with diverging number of parameters Modeling and testing for endpoint-inflated count time series with bounded support Semi-parametric empirical likelihood inference on quantile difference between two samples with length-biased and right-censored data Sieve estimation of the accelerated mean model based on panel count data The proximal bootstrap for constrained estimators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1