Reverse-consolidation analysis of basal soil with layered heterogeneity using the spectral Galerkin method

IF 5.3 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers and Geotechnics Pub Date : 2024-09-30 DOI:10.1016/j.compgeo.2024.106786
{"title":"Reverse-consolidation analysis of basal soil with layered heterogeneity using the spectral Galerkin method","authors":"","doi":"10.1016/j.compgeo.2024.106786","DOIUrl":null,"url":null,"abstract":"<div><div>The reverse-consolidation caused by excavation inevitably affects the bearing capacity of basal soil to resist water pressure in confined aquifers, posing a risk to excavation stability. However, there is still a lack of efficient solutions to incorporate the layered heterogeneity into the analysis of the reverse-consolidation. This study proposes a practical approach where the spectral Galerkin method is used to capture the variation of soil properties with depth. The boundaries are characterized by time-dependent drainage boundary conditions to simulate the excavation process. The excess pore-water pressure profile is described by a single expression calculated by common matrix operations. The rationality and accuracy of the practical approach are verified by existing analytical models and field data. Subsequently, the permeability coefficient variability, relatively impervious interlayer, and sand interlayer are analyzed to illustrate their effects on the reverse-consolidation behavior of basal soil. Results indicate that the distribution of excess pore-water pressure is significantly influenced by the variability and distribution form of the permeability coefficient. The relatively impervious interlayer delays the dissipation of excess pore-water pressure and bears a large hydraulic gradient, while the sand interlayer is the opposite. These above influences become more significant as the excavation progresses due to the time effect.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24007250","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The reverse-consolidation caused by excavation inevitably affects the bearing capacity of basal soil to resist water pressure in confined aquifers, posing a risk to excavation stability. However, there is still a lack of efficient solutions to incorporate the layered heterogeneity into the analysis of the reverse-consolidation. This study proposes a practical approach where the spectral Galerkin method is used to capture the variation of soil properties with depth. The boundaries are characterized by time-dependent drainage boundary conditions to simulate the excavation process. The excess pore-water pressure profile is described by a single expression calculated by common matrix operations. The rationality and accuracy of the practical approach are verified by existing analytical models and field data. Subsequently, the permeability coefficient variability, relatively impervious interlayer, and sand interlayer are analyzed to illustrate their effects on the reverse-consolidation behavior of basal soil. Results indicate that the distribution of excess pore-water pressure is significantly influenced by the variability and distribution form of the permeability coefficient. The relatively impervious interlayer delays the dissipation of excess pore-water pressure and bears a large hydraulic gradient, while the sand interlayer is the opposite. These above influences become more significant as the excavation progresses due to the time effect.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光谱伽勒金方法对具有层状异质性的基底土壤进行反向固结分析
开挖引起的反向固结不可避免地会影响基底土抵抗承压含水层水压力的承载能力,对开挖稳定性构成风险。然而,目前仍缺乏将层状异质性纳入反向固结分析的有效解决方案。本研究提出了一种实用的方法,即使用频谱 Galerkin 方法来捕捉土壤性质随深度的变化。边界采用随时间变化的排水边界条件来模拟挖掘过程。过剩孔隙水压力剖面由通过普通矩阵运算计算的单一表达式描述。现有的分析模型和现场数据验证了这一实用方法的合理性和准确性。随后,分析了渗透系数变化、相对不透水夹层和砂夹层对基底土反固结行为的影响。结果表明,过剩孔隙水压力的分布受渗透系数的变化和分布形式的影响很大。相对不透水的夹层会延迟过剩孔隙水压力的消散,并承受较大的水力梯度,而砂土夹层则相反。由于时间效应,随着开挖的进行,上述影响会变得更加显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Geotechnics
Computers and Geotechnics 地学-地球科学综合
CiteScore
9.10
自引率
15.10%
发文量
438
审稿时长
45 days
期刊介绍: The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.
期刊最新文献
An adversarial multi-source transfer learning method for the stability analysis of methane hydrate-bearing sediments Microscopic investigation of shape effect on local scour around the monopile using CFD-DEM MatGBM: A Computer Vision-Aided Triangular Mesh Generator for High-Fidelity Grain-Based Model Three-dimensional dynamic responses of a layered transversely isotropic half-space with irregular interfaces using the thin layer method Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1