{"title":"Fluorine and boron co doped porous carbon materials as an electrochemical platform in trace-level sodium nitrite sensing","authors":"Nuerbiya Yalikun, Hongzhou gong, Chaofan Liu, Yingshuang Zhang","doi":"10.1016/j.microc.2024.111769","DOIUrl":null,"url":null,"abstract":"<div><div>Sodium nitrite (NaNO<sub>2</sub>) is a common chemical oilfield tracer in the field of reservoir geological analysis. A simple, sensitive, and accurate electrochemical detection method for detection of NaNO<sub>2</sub> has been studied. The electrode carbon porous material was based on coal tar pitch n-pentane insoluble extractants (CTPNI) and doped with the elements of fluorine (F) and boron (B) and labeled as FB-CTPNI-PC and an electrochemical sensor modified with FB-CTPNI-PC material was constructed for rapid detection of NaNO<sub>2</sub>. The characterization results of SEM and TEM indicate that this material has certain number of pore structures, also the BET analysis showed that has main pore size distribution is around the range of 2–20 nm, with abundant mesoporous structure. Moreover, the modified electrode has a good electrocatalytic effect on NaNO<sub>2</sub>. The electrochemical reaction mechanism of NaNO<sub>2</sub> on the surface of the modified electrode was a diffusion-controlled process involving protons. The detection range of NaNO<sub>2</sub> can reach 0.1 mM–9.5 mM. When the S/N is 3, the sensitivity is 219.8592 A·L·cm<sup>2</sup>·mol<sup>−1</sup> and the detection limit (LOD) is 0.011 μM. The constructed electrochemical sensor has been applied to the rapid detection of NaNO<sub>2</sub> in real oilfield water, with recovery rates ranging from 99.7 % to 103.4 %. It is also roughly consistent with the results of ion chromatography (IC) in detecting NaNO<sub>2</sub> in oilfield water, indicating that the sensor has high accuracy. This has provided a new prospect for oil filed tracer and detection technologies.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"207 ","pages":"Article 111769"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24018812","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sodium nitrite (NaNO2) is a common chemical oilfield tracer in the field of reservoir geological analysis. A simple, sensitive, and accurate electrochemical detection method for detection of NaNO2 has been studied. The electrode carbon porous material was based on coal tar pitch n-pentane insoluble extractants (CTPNI) and doped with the elements of fluorine (F) and boron (B) and labeled as FB-CTPNI-PC and an electrochemical sensor modified with FB-CTPNI-PC material was constructed for rapid detection of NaNO2. The characterization results of SEM and TEM indicate that this material has certain number of pore structures, also the BET analysis showed that has main pore size distribution is around the range of 2–20 nm, with abundant mesoporous structure. Moreover, the modified electrode has a good electrocatalytic effect on NaNO2. The electrochemical reaction mechanism of NaNO2 on the surface of the modified electrode was a diffusion-controlled process involving protons. The detection range of NaNO2 can reach 0.1 mM–9.5 mM. When the S/N is 3, the sensitivity is 219.8592 A·L·cm2·mol−1 and the detection limit (LOD) is 0.011 μM. The constructed electrochemical sensor has been applied to the rapid detection of NaNO2 in real oilfield water, with recovery rates ranging from 99.7 % to 103.4 %. It is also roughly consistent with the results of ion chromatography (IC) in detecting NaNO2 in oilfield water, indicating that the sensor has high accuracy. This has provided a new prospect for oil filed tracer and detection technologies.
期刊介绍:
The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field.
Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.