Guillaume Chomicki , Nathanael Walker–Hale , J. Peter Etchells , Eleanore J. Ritter , Marjorie G. Weber
{"title":"Diversity and development of domatia: Symbiotic plant structures to host mutualistic ants or mites","authors":"Guillaume Chomicki , Nathanael Walker–Hale , J. Peter Etchells , Eleanore J. Ritter , Marjorie G. Weber","doi":"10.1016/j.pbi.2024.102647","DOIUrl":null,"url":null,"abstract":"<div><div>Across the tree of life, specialized structures that offer nesting sites to ants or mites – known as domatia – have evolved independently hundreds of times, facilitating ecologically important defence and/or nutritional mutualisms. Domatia show remarkable diversity in morphology and developmental origin. Here we review the morpho-anatomical diversity of domatia, aiming to unveil the primary mechanisms governing their development. We propose hypotheses to explain the formation of these structures, based on anatomical studies of domatia and developmental genetic analyses in model species. While genes involved in domatium formation are so far unknown, domatia appear to originate via spatiotemporal shifts in the expression of common developmental genetic pathways. Our review paves the way to the genetic dissection of domatium development.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"82 ","pages":"Article 102647"},"PeriodicalIF":8.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526624001389","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Across the tree of life, specialized structures that offer nesting sites to ants or mites – known as domatia – have evolved independently hundreds of times, facilitating ecologically important defence and/or nutritional mutualisms. Domatia show remarkable diversity in morphology and developmental origin. Here we review the morpho-anatomical diversity of domatia, aiming to unveil the primary mechanisms governing their development. We propose hypotheses to explain the formation of these structures, based on anatomical studies of domatia and developmental genetic analyses in model species. While genes involved in domatium formation are so far unknown, domatia appear to originate via spatiotemporal shifts in the expression of common developmental genetic pathways. Our review paves the way to the genetic dissection of domatium development.
期刊介绍:
Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.