Spin-torque vortex-oscillator with modified saturation magnetization in ferromagnetic nanodots

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Physica B-condensed Matter Pub Date : 2024-09-27 DOI:10.1016/j.physb.2024.416579
{"title":"Spin-torque vortex-oscillator with modified saturation magnetization in ferromagnetic nanodots","authors":"","doi":"10.1016/j.physb.2024.416579","DOIUrl":null,"url":null,"abstract":"<div><div>Recent years have seen greater interest in manipulating vortex states in magnetic nanostructures for non-volatile memory and logic networks. We show how reducing saturation magnetization locally in ferromagnetic thick nanodot vortex-based spin-torque nano-oscillators modulates their frequency using micromagnetic simulations. When a spin-polarized current and a static in-plane magnetic field are applied to the vortex core of an isolated thick nanodot, the uniform gyrotropic modes and the first higher-order gyrotropic mode resonate at different frequencies in various saturation magnetization areas. The intensity of the first higher-order mode gets almost suppressed in areas with modified saturation magnetization. With linewidths ranging from 25 to 70 MHz with the considered dimensions, these small spin-torque vortex-oscillator devices made of thick Permalloy nanodots seem promising for use in gigahertz signal processing. Our study suggests that locally modifying saturation magnetization may be a cost-effective technique to build dense oscillator and array networks for neuromorphic computing without lithographical fabrication stages.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624009207","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have seen greater interest in manipulating vortex states in magnetic nanostructures for non-volatile memory and logic networks. We show how reducing saturation magnetization locally in ferromagnetic thick nanodot vortex-based spin-torque nano-oscillators modulates their frequency using micromagnetic simulations. When a spin-polarized current and a static in-plane magnetic field are applied to the vortex core of an isolated thick nanodot, the uniform gyrotropic modes and the first higher-order gyrotropic mode resonate at different frequencies in various saturation magnetization areas. The intensity of the first higher-order mode gets almost suppressed in areas with modified saturation magnetization. With linewidths ranging from 25 to 70 MHz with the considered dimensions, these small spin-torque vortex-oscillator devices made of thick Permalloy nanodots seem promising for use in gigahertz signal processing. Our study suggests that locally modifying saturation magnetization may be a cost-effective technique to build dense oscillator and array networks for neuromorphic computing without lithographical fabrication stages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁磁纳米点中具有修正饱和磁化的自旋力矩涡旋振荡器
近年来,人们对操纵磁性纳米结构中的涡旋态以实现非易失性存储器和逻辑网络越来越感兴趣。我们通过微磁模拟展示了如何局部降低铁磁性厚纳米点涡旋型自旋力矩纳米振荡器的饱和磁化,从而调制其频率。当对孤立厚纳米点的涡旋核心施加自旋极化电流和静态面内磁场时,在不同的饱和磁化区域,均匀陀螺回转模式和第一高阶陀螺回转模式会产生不同频率的共振。在饱和磁化改变的区域,第一高阶模式的强度几乎被抑制。在所考虑的尺寸下,这些由厚坡莫合金纳米点制成的小型自旋力矩涡旋振荡器器件的线宽范围为 25 到 70 MHz,似乎很有希望用于千兆赫信号处理。我们的研究表明,局部改变饱和磁化可能是一种经济有效的技术,可用于构建神经形态计算所需的密集振荡器和阵列网络,而无需平版印刷制造阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
期刊最新文献
Magnetic structure and colossal dielectric properties in Ga3+ substituted Zn2Y hexaferrites by chemical co-precipitation method Investigation of magneto-optoelectronics properties of Mg1-xMnxS alloys for optoelectronics and spintronic applications Persistence luminescence and thermoluminescence of 260 nm UVC irradiated mixed-phase (BaAl2O4 - BaAl12O19) barium aluminate Synthesis, characterization, electrochemical impedance spectroscopy performance and photodegradation of methylene blue: Mesoporous PEG/TiO2 by sol-gel electrospinning Gradient distribution of cations in rhabdophane La0.27Y0.73PO4·nH2O nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1