{"title":"Using difference features effectively: A multi-task network for exploring change areas and change moments in time series remote sensing images","authors":"Jialu Li, Chen Wu","doi":"10.1016/j.isprsjprs.2024.09.029","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid advancement in remote sensing Earth observation technology, an abundance of Time Series multispectral remote sensing Images (TSIs) from platforms like Landsat and Sentinel-2 are now accessible, offering essential data support for Time Series remote sensing images Change Detection (TSCD). However, TSCD faces misalignment challenges due to variations in radiation incidence angles, satellite orbit deviations, and other factors when capturing TSIs at the same geographic location but different times. Furthermore, another important issue that needs immediate attention is the precise determination of change moments for change areas within TSIs. To tackle these challenges, this paper proposes Multi-RLD-Net, a multi-task network that efficiently utilizes difference features to explore change areas and corresponding change moments in TSIs. To the best of our knowledge, this is the first time that using deep learning for identifying change moments in TSIs. Multi-RLD-Net integrates Optical Flow with Long Short-Term Memory (LSTM) to derive differences between TSIs. Initially, a lightweight encoder is introduced to extract multi-scale spatial features, which maximally preserve original features through a siamese structure. Subsequently, shallow spatial features extracted by the encoder are input into the novel Recursive Optical Flow Difference (ROD) module to align input features and detect differences between them, while deep spatial features extracted by the encoder are input into LSTM to capture long-term temporal dependencies and differences between hidden states. Both branches output differences among TSIs, enhancing the expressive capacity of the model. Finally, the decoder identifies change areas and their corresponding change moments using multi-task branches. Experiments on UTRNet dataset and DynamicEarthNet dataset demonstrate that proposed RLD-Net and Multi-RLD-Net outperform representative approaches, achieving F1 value improvements of 1.29% and 10.42% compared to the state-of-the art method MC<sup>2</sup>ABNet. The source code will be available soon at <span><span>https://github.com/lijialu144/Multi-RLD-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 487-505"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003678","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement in remote sensing Earth observation technology, an abundance of Time Series multispectral remote sensing Images (TSIs) from platforms like Landsat and Sentinel-2 are now accessible, offering essential data support for Time Series remote sensing images Change Detection (TSCD). However, TSCD faces misalignment challenges due to variations in radiation incidence angles, satellite orbit deviations, and other factors when capturing TSIs at the same geographic location but different times. Furthermore, another important issue that needs immediate attention is the precise determination of change moments for change areas within TSIs. To tackle these challenges, this paper proposes Multi-RLD-Net, a multi-task network that efficiently utilizes difference features to explore change areas and corresponding change moments in TSIs. To the best of our knowledge, this is the first time that using deep learning for identifying change moments in TSIs. Multi-RLD-Net integrates Optical Flow with Long Short-Term Memory (LSTM) to derive differences between TSIs. Initially, a lightweight encoder is introduced to extract multi-scale spatial features, which maximally preserve original features through a siamese structure. Subsequently, shallow spatial features extracted by the encoder are input into the novel Recursive Optical Flow Difference (ROD) module to align input features and detect differences between them, while deep spatial features extracted by the encoder are input into LSTM to capture long-term temporal dependencies and differences between hidden states. Both branches output differences among TSIs, enhancing the expressive capacity of the model. Finally, the decoder identifies change areas and their corresponding change moments using multi-task branches. Experiments on UTRNet dataset and DynamicEarthNet dataset demonstrate that proposed RLD-Net and Multi-RLD-Net outperform representative approaches, achieving F1 value improvements of 1.29% and 10.42% compared to the state-of-the art method MC2ABNet. The source code will be available soon at https://github.com/lijialu144/Multi-RLD-Net.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.