Gengxuan Tian , Junqiao Zhao , Yingfeng Cai , Fenglin Zhang , Xufei Wang , Chen Ye , Sisi Zlatanova , Tiantian Feng
{"title":"VNI-Net: Vector neurons-based rotation-invariant descriptor for LiDAR place recognition","authors":"Gengxuan Tian , Junqiao Zhao , Yingfeng Cai , Fenglin Zhang , Xufei Wang , Chen Ye , Sisi Zlatanova , Tiantian Feng","doi":"10.1016/j.isprsjprs.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the emergence of various LiDAR-based place recognition methods, the challenge of place recognition failure due to rotation remains critical. Existing studies have attempted to address this limitation through specific training strategies involving data augment and rotation-invariant networks. However, augmenting 3D rotations (<span><math><mrow><mi>SO</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span>) is impractical for the former, while the latter primarily focuses on the reduced problem of 2D rotation (<span><math><mrow><mi>SO</mi><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>) invariance. Existing methods targeting <span><math><mrow><mi>SO</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span> rotation invariance suffer from limitations in discriminative capability. In this paper, we propose a novel approach (VNI-Net) based on the Vector Neurons Network (VNN) to achieve <span><math><mrow><mi>SO</mi><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow></math></span> rotation invariance. Our method begins by extracting rotation-equivariant features from neighboring points and projecting these low-dimensional features into a high-dimensional space using VNN. We then compute both Euclidean and cosine distances in the rotation-equivariant feature space to obtain rotation-invariant features. Finally, we aggregate these features using generalized-mean (GeM) pooling to generate the global descriptor. To mitigate the significant information loss associated with formulating rotation-invariant features, we propose computing distances between features at different layers within the Euclidean space neighborhood. This approach significantly enhances the discriminability of the descriptors while maintaining computational efficiency. We conduct experiments across multiple publicly available datasets captured with vehicle-mounted, drone-mounted LiDAR sensors and handheld. VNI-Net outperforms baseline methods by up to 15.3% in datasets with rotation, while achieving comparable results with state-of-the-art place recognition methods in datasets with less rotation. Our code is open-sourced at <span><span>https://github.com/tiev-tongji/VNI-Net</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 506-517"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624003496","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the emergence of various LiDAR-based place recognition methods, the challenge of place recognition failure due to rotation remains critical. Existing studies have attempted to address this limitation through specific training strategies involving data augment and rotation-invariant networks. However, augmenting 3D rotations () is impractical for the former, while the latter primarily focuses on the reduced problem of 2D rotation () invariance. Existing methods targeting rotation invariance suffer from limitations in discriminative capability. In this paper, we propose a novel approach (VNI-Net) based on the Vector Neurons Network (VNN) to achieve rotation invariance. Our method begins by extracting rotation-equivariant features from neighboring points and projecting these low-dimensional features into a high-dimensional space using VNN. We then compute both Euclidean and cosine distances in the rotation-equivariant feature space to obtain rotation-invariant features. Finally, we aggregate these features using generalized-mean (GeM) pooling to generate the global descriptor. To mitigate the significant information loss associated with formulating rotation-invariant features, we propose computing distances between features at different layers within the Euclidean space neighborhood. This approach significantly enhances the discriminability of the descriptors while maintaining computational efficiency. We conduct experiments across multiple publicly available datasets captured with vehicle-mounted, drone-mounted LiDAR sensors and handheld. VNI-Net outperforms baseline methods by up to 15.3% in datasets with rotation, while achieving comparable results with state-of-the-art place recognition methods in datasets with less rotation. Our code is open-sourced at https://github.com/tiev-tongji/VNI-Net.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.