Martin Marzidovšek , Janja Francé , Vid Podpečan , Stanka Vadnjal , Jožica Dolenc , Patricija Mozetič
{"title":"Explainable machine learning for predicting diarrhetic shellfish poisoning events in the Adriatic Sea using long-term monitoring data","authors":"Martin Marzidovšek , Janja Francé , Vid Podpečan , Stanka Vadnjal , Jožica Dolenc , Patricija Mozetič","doi":"10.1016/j.hal.2024.102728","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, explainable machine learning techniques are applied to predict the toxicity of mussels in the Gulf of Trieste (Adriatic Sea) caused by harmful algal blooms. By analysing a newly created 28-year dataset containing records of toxic phytoplankton in mussel farming areas and diarrhetic shellfish toxins in mussels (<em>Mytilus galloprovincialis</em>), we train and evaluate the performance of machine learning (ML) models to accurately predict diarrhetic shellfish poisoning (DSP) events. Based on the F1 score, the random forest model provided the best prediction of toxicity results at which the harvesting of mussels is stopped according to EU regulations. Explainability methods such as permutation importance and Shapley Additive Explanations (SHAP) identified key species (<em>Dinophysis fortii</em> and <em>D. caudata</em>) and environmental factors (salinity, river discharge and precipitation) as the best predictors of DSP toxins above regulatory limits. These findings are important for improving early warning systems, which until now were based solely on empirically defined alert abundances of DSP species. They provide experts, aquaculture practitioners, and authorities with additional information to make informed risk management decisions.</div></div>","PeriodicalId":12897,"journal":{"name":"Harmful Algae","volume":"139 ","pages":"Article 102728"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Harmful Algae","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568988324001616","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, explainable machine learning techniques are applied to predict the toxicity of mussels in the Gulf of Trieste (Adriatic Sea) caused by harmful algal blooms. By analysing a newly created 28-year dataset containing records of toxic phytoplankton in mussel farming areas and diarrhetic shellfish toxins in mussels (Mytilus galloprovincialis), we train and evaluate the performance of machine learning (ML) models to accurately predict diarrhetic shellfish poisoning (DSP) events. Based on the F1 score, the random forest model provided the best prediction of toxicity results at which the harvesting of mussels is stopped according to EU regulations. Explainability methods such as permutation importance and Shapley Additive Explanations (SHAP) identified key species (Dinophysis fortii and D. caudata) and environmental factors (salinity, river discharge and precipitation) as the best predictors of DSP toxins above regulatory limits. These findings are important for improving early warning systems, which until now were based solely on empirically defined alert abundances of DSP species. They provide experts, aquaculture practitioners, and authorities with additional information to make informed risk management decisions.
期刊介绍:
This journal provides a forum to promote knowledge of harmful microalgae and macroalgae, including cyanobacteria, as well as monitoring, management and control of these organisms.