Physical, mechanical and thermal properties of novel bamboo/kenaf fiber-reinforced polylactic acid (PLA) hybrid composites

IF 6.5 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composites Communications Pub Date : 2024-09-28 DOI:10.1016/j.coco.2024.102103
{"title":"Physical, mechanical and thermal properties of novel bamboo/kenaf fiber-reinforced polylactic acid (PLA) hybrid composites","authors":"","doi":"10.1016/j.coco.2024.102103","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the physical, mechanical, and thermal properties of bamboo (BF) and kenaf (KF) fiber-reinforced polylactic acid (PLA) hybrid composites. Three hybrid (30BF-70KF, 50BF-50KF, and 70BF-30KF) and two non-hybrid (BF-PLA and KF-PLA) composites were developed through twin screw extrusion and compression molding techniques. The physical properties (density, void content, crystallinity via XRD, and chemical interactions via FTIR), mechanical properties (tensile, flexural, compressive, impact, and hardness), and thermal properties (Thermogravimetric analysis-TGA and Differential scanning calorimetry-DSC) were thoroughly analyzed. BF reinforcement reduced the composites’ density to 1.1826 g/cm³, while the inclusion of KF increased it to 1.2479 g/cm³. 50:50 blend of bamboo-kenaf reinforcement achieved the lowest void content of 0.27 %. The XRD patterns revealed heightened crystallinity in the BF-PLA composite. FTIR analysis showed stable functional groups, with O–H absorption bands indicative of cellulosic fibers. The BF-PLA non-hybrid composite exhibited the highest tensile strength at 25.95 MPa and compressive strength at 173.15 MPa, with the 30BF-70KF hybrid composite showing notable impact strength. Fractured morphology by FESEM revealed superior fiber-matrix adhesion for BF-PLA composite. TGA demonstrated a variation in thermal degradation temperatures, with the BF30-KF70 composite showing the highest onset of degradation at 484 °C. DSC analysis indicated a reduction in the glass transition temperature (T<sub>g</sub>) across all fiber-reinforced samples and revealed significant adjustments in melting and crystallization temperatures. This research highlights the potential of BF-KF/PLA hybrid composites in the development of eco-friendly plastic furniture and consumer products.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924002948","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the physical, mechanical, and thermal properties of bamboo (BF) and kenaf (KF) fiber-reinforced polylactic acid (PLA) hybrid composites. Three hybrid (30BF-70KF, 50BF-50KF, and 70BF-30KF) and two non-hybrid (BF-PLA and KF-PLA) composites were developed through twin screw extrusion and compression molding techniques. The physical properties (density, void content, crystallinity via XRD, and chemical interactions via FTIR), mechanical properties (tensile, flexural, compressive, impact, and hardness), and thermal properties (Thermogravimetric analysis-TGA and Differential scanning calorimetry-DSC) were thoroughly analyzed. BF reinforcement reduced the composites’ density to 1.1826 g/cm³, while the inclusion of KF increased it to 1.2479 g/cm³. 50:50 blend of bamboo-kenaf reinforcement achieved the lowest void content of 0.27 %. The XRD patterns revealed heightened crystallinity in the BF-PLA composite. FTIR analysis showed stable functional groups, with O–H absorption bands indicative of cellulosic fibers. The BF-PLA non-hybrid composite exhibited the highest tensile strength at 25.95 MPa and compressive strength at 173.15 MPa, with the 30BF-70KF hybrid composite showing notable impact strength. Fractured morphology by FESEM revealed superior fiber-matrix adhesion for BF-PLA composite. TGA demonstrated a variation in thermal degradation temperatures, with the BF30-KF70 composite showing the highest onset of degradation at 484 °C. DSC analysis indicated a reduction in the glass transition temperature (Tg) across all fiber-reinforced samples and revealed significant adjustments in melting and crystallization temperatures. This research highlights the potential of BF-KF/PLA hybrid composites in the development of eco-friendly plastic furniture and consumer products.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型竹子/红叶纤维增强聚乳酸(PLA)混合复合材料的物理、机械和热性能
本研究探讨了竹纤维(BF)和槿麻(KF)纤维增强聚乳酸(PLA)混合复合材料的物理、机械和热性能。通过双螺杆挤压和压缩成型技术,开发了三种混合(30BF-70KF、50BF-50KF 和 70BF-30KF)和两种非混合(BF-PLA 和 KF-PLA)复合材料。对复合材料的物理性质(密度、空隙率、X 射线衍射结晶度和傅立叶变换红外光谱中的化学作用)、机械性能(拉伸、弯曲、压缩、冲击和硬度)和热性能(热重分析-TGA 和差示扫描量热-DSC)进行了全面分析。BF 增强将复合材料的密度降低到 1.1826 g/cm³,而 KF 的加入则将密度提高到 1.2479 g/cm³。竹-枫 50:50 混合增强材料的空隙率最低,仅为 0.27%。XRD 图谱显示,BF-PLA 复合材料的结晶度有所提高。傅立叶变换红外光谱分析显示出稳定的官能团,O-H 吸收带显示出纤维素纤维的特征。BF-PLA 非杂化复合材料的拉伸强度最高,为 25.95 兆帕,压缩强度为 173.15 兆帕,30BF-70KF 杂化复合材料的冲击强度也很显著。通过 FESEM 观察断裂形态,发现 BF-PLA 复合材料的纤维与基质的粘附性更好。TGA 显示了热降解温度的变化,BF30-KF70 复合材料在 484 °C 时降解开始温度最高。DSC 分析表明,所有纤维增强样品的玻璃化转变温度(Tg)都有所降低,并显示出熔化和结晶温度的显著调整。这项研究凸显了 BF-KF/PLA 混合复合材料在开发环保塑料家具和消费品方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composites Communications
Composites Communications Materials Science-Ceramics and Composites
CiteScore
12.10
自引率
10.00%
发文量
340
审稿时长
36 days
期刊介绍: Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.
期刊最新文献
Editorial Board An ultra-low density and mechanically robust ANFs/MXene/UiO-66-NH2 aerogel for enhancing thermal conductivity and tribological properties of epoxy resins Microwave absorption characterization of hollow and porous rGO-FeCoNiCrMn/EC/EP composite microsphere materials Reactive extrusion for efficient preparation of high temperature resistant PA6T/66/BN composites with great thermal management and mechanical properties In-situ fabrication of a strong and stiff MgAl2O4/Al-based composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1